
Rational Software Development Platform

VisualAge Generator to EGL Migration

Guide

Version 6 Release 011

SC31-6830-03

���

Rational Software Development Platform

VisualAge Generator to EGL Migration

Guide

Version 6 Release 011

SC31-6830-03

���

Note

Before using this document, read the general information under “Notices” on page 433.

Third Edition (September 2006)

This edition applies to the following licensed programs:

v Rational Web Developer

v Rational Application Developer

v WebSphere Development Studio Client Advanced Edition for iSeries

v WebSphere Developer for zSeries

IBM welcomes your comments. You can send your comments by mail to the following address:

IBM Corporation, Attn: Information Development, Department 53NA Building 501, P.O. Box 12195, Research

Triangle Park, NC 27709-2195.

When you send information to IBM, you grant IBM a nonexclusive right to use or distribute the information in any

way it believes appropriate without incurring any obligation to you.

© Copyright International Business Machines Corporation 2004, 2006. All rights reserved.

US Government Users Restricted Rights – Use, duplication or disclosure restricted by GSA ADP Schedule Contract

with IBM Corp.

Preface

This document is intended for those who want to migrate from VisualAge

Generator 4.5 to the Enterprise Generation Language (EGL).

Who should read this book

This book is intended for programmers or system administrators who want to

migrate code from VisualAge Generator 4.5 to the Enterprise Generation Language

(EGL).

Related information

Related documents are provided in one or more of the following formats:

v Online book files (.pdf) on the product CD-ROM. Adobe Acrobat Reader is used

to view the manuals online and to print desired pages.

v HTML files (.htm) on the product CD-ROM.

The most recent version of this book is available as an online book file (.pdf) on

the following web site:

http://www.ibm.com/developerworks/rational/products/egl/egldoc.html

© Copyright IBM Corp. 2004, 2006 iii

iv Rational Software Development Platform: VisualAge Generator to EGL Migration Guide

Contents

Preface iii

Who should read this book iii

Related information iii

Part 1. Migration overview 1

Chapter 1. Migration Overview 3

Terminology used in this book 3

What is new in EGL that requires migration? . . . 4

Planning your migration 4

Determining whether you can migrate to EGL . . . 8

VisualAge Generator features not available in

EGL 10

Terminology differences 11

References 15

Chapter 2. Migration Tool Philosophy 17

Overview of the VisualAge Generator to EGL

Migration Tools 18

Migration tool terminology 18

Stage 1 Details 19

Stage 2 Details 22

Stage 3 Details 23

Overview of Single File Migration 24

Migration challenges 27

Precise EGL syntax 27

When and how part names are resolved 28

Common code scenarios 29

Techniques used by the VisualAge Generator to EGL

Migration Tool 32

Overview of techniques 32

Editor and build descriptor preferences 32

Program properties 34

EGL build path and import statements 35

containerContextDependent Property 36

EGL reserved word list 38

Placing parts in EGL files 38

Migrating with a program 41

Migrating with associated parts 42

Migrating without associated parts 43

Controlling the order for processing migration

sets 43

Overwriting and merging files 44

General rules 46

Determining how to organize your EGL source code 49

Differences in product capabilities for organizing

your code 50

Organization capabilities provided by the

migration tool 52

Limitations and tradeoffs of EGL source code

organization techniques 53

What is new for the VAGen migration tool since

EGL 5.1.2? 55

What is new for the VAGen migration tool since

EGL 6.0 iFix? 56

What is new for the VAGen migration tool since

EGL 6.0.0.1? 56

What is new for the VAGen migration tool since

EGL 6.0.1? 56

What is new for the VAGen migration tool since

EGL 6.0.1.1? 57

Known restrictions for the migration tools 58

General 58

Stage 1 on Java and Smalltalk 58

Stages 2 and 3 58

Syntax migration 59

Chapter 3. Handling ambiguous

situations 61

Handling ambiguous situations for data items . . . 61

PACK data items with even length 61

Shared edits and messages 63

Map edit routine for shared data items 64

Fill characters for shared data items 66

Handling ambiguous situations for records 66

Redefined records 66

Level 77 items in records 67

Alternate specification records 68

Different definitions with the same record name 70

Reserved words and UI record names 70

Handling ambiguous situations for tables 71

Reserved words and table names 71

Handling ambiguous situations for map groups and

maps 72

Reserved words and formGroup names 72

Map group and formGroup requirements . . . 73

Floating areas and starting positions 74

Map groups, maps, and device sizes 74

Map names and help map names 75

Numeric variable fields 77

Map variable fields and edit routines 78

Map fields and the numeric hardware attribute 79

Map arrays and attributes 80

Unnamed map variable fields 81

Unprotected map constants 81

Fields at row=0, column=0 82

Handling ambiguous situations for programs . . . 83

Program names and reserved words 83

Implicit data items in programs 84

Associated program parts 84

Program with EZEDLPCB in called parameter list 86

Intermediate variables required for migration . . 87

Handling ambiguous situations for functions,

including I/O statements 89

DISPLAY statement for maps 89

I/O error routine 90

SQL I/O statements 91

SQL I/O and missing required SQL clauses . . . 93

© Copyright IBM Corp. 2004, 2006 v

SQL I/O and !itemColumnName 95

SQL I/O with multiple updates 96

DL/I I/O and comparison value items 96

Handling ambiguous situations for other statements 97

Implicit data items in statements 97

Level 77 items in statements 98

Table references in statements 98

Assignment statements 98

FIND statement 99

RETR statement 100

SET map PAGE statement 100

SET mapItem attributes 101

Checking for IN literal or scalar 102

Checking SQL and map items for NULL . . . 103

I/O error values UNQ and DUP 104

I/O error value LOK 106

Handling ambiguous situations for EZE words . . 107

EZELTERM 107

EZESYS 108

EZEWAIT 110

Part 2. Migrating from VisualAge

Generator 4.5 on Java to EGL . . . 113

Chapter 4. Stage 1 — Extracting from

Java 115

Installing the Stage 1 migration tool on VisualAge

for Java 115

Adding the migration feature 116

Creating the migration database 116

Setting Stage 1 preferences 116

Build Plans page 117

Mapping page 119

Renaming page 121

Execution page 121

Sample MigPreferences.xml file 124

Before you run the Stage 1 tool — hints and tips 125

Improving performance 126

Saving your workspace 126

Running the Stage 1 tool 127

Migration plans and high-level PLP projects . . . 128

Creating a high-level PLP project 128

Creating a migration plan file manually . . . 130

Part 3. Migrating from VisualAge

Generator 4.5 on Smalltalk to EGL . 133

Chapter 5. Stage 1 — Extracting from

Smalltalk 135

Installing the Stage 1 migration tool on VisualAge

Smalltalk 135

Loading the migration feature 136

Creating the migration database 136

Setting Stage 1 preferences 136

Build Plans page 137

Mapping page 139

Renaming page 141

Execution page 142

Sample MigPreferences.xml file 143

Deriving file names from your preferences . . 145

Before you run the Stage 1 tool — hints and tips 145

Improving performance 146

Saving your image 146

Running the Stage 1 migration tool 147

Migration plans and high-level configuration maps 149

Creating a high-level configuration map . . . 150

Creating a migration plan file manually . . . 151

Part 4. Stages 2 and 3 — common

migration steps 153

Chapter 6. Stage 2—Conversion to

EGL syntax 155

Setting DB2 performance information 155

Setting your workbench preferences 155

Start up parameters 155

Required EGL preferences 156

Recommended preferences 156

VAGen Migration Preferences 157

Other recommended settings 161

Setting up the Stage 2 VAGen migration file . . . 162

Running Stage 2 166

Running Stage 2 from the user interface . . . 166

Running Stage 2 in batch mode 167

Chapter 7. Stage 3 — Import 171

Running the Stage 3 tool 171

Running Stage 3 in batch mode 174

Using the migration sets written to temporary

directories 174

Chapter 8. Running migration in

single file mode 177

Running single file migration using the user

interface 177

Running single file migration using batch mode 179

Part 5. Completing the migration 181

Chapter 9. Completing your migration 183

Setting the Build Order preference 183

Exporting your preferences 183

Saving a baseline for EGL projects and packages 184

Preliminary steps for completing single file

migration 184

Common steps for both Stage 1 — 3 and single file

migration 185

Reviewing your EGL source code 185

Reviewing your EGL build descriptor parts . . 185

Reviewing your EGL linkage option parts . . . 188

Reviewing your EGL resource association parts 190

Establishing a bind control part to use as a

template 190

Establishing a program-specific bind control

part 192

Reviewing linkedit commands 193

vi Rational Software Development Platform: VisualAge Generator to EGL Migration Guide

Converting VAGen preparation templates and

procedures to EGL build scripts 193

Converting VAGen runtime templates 194

Converting the VAGen reserved words file . . 195

Reviewing your VGWebTransactions 196

Preparing for debugging 197

Installing the EGL server product 197

Generating and testing with COBOL generation 198

Generating and testing with Java generation . . 200

Reviewing your standards 200

Planning for dual maintenance of your source

code 200

Eliminating the use of VisualAge Generator

Compatibility mode 201

Part 6. Language and runtime

differences 207

Chapter 10. Language and runtime

differences 209

Language differences 209

Runtime differences 209

General differences 209

Differences in SQL support 210

Differences in debug 211

Differences in generated COBOL 212

Differences in generated Java 213

Differences between host and workstation

environments 213

Differences between distributed CICS and native

workstation environments 214

Differences between generated C++ and

generated Java 217

Part 7. Appendixes 219

Appendix A. Reserved words 221

EGL reserved words 221

EGL enumeration words 221

SQL reserved words 225

SQL reserved words requiring special treatment 225

Java reserved words 226

Appendix B. Relationship of

VisualAge Generator and EGL

Language Elements 227

General syntax conventions 228

Data item 228

Record 235

Tables 249

Map groups 252

Maps 255

Programs 268

Functions 275

Statements 292

EZE words 305

Program flow EZE words 305

SQL EZE words 305

DL/I EZE words 306

Date and time EZE words 307

Other data EZE words 308

General function EZE words 310

String EZE words 311

Math EZE words 312

User interface EZE words 313

Object scripting EZE words 313

Service Routines 313

PSBs 314

Control parts 316

Generation options part 318

Linkage table parts 334

Resource association part 341

Link edit part 345

Bind control part 345

Symbolic parameters 346

Other generation information 348

Preparation templates and procedures 348

Runtime templates 350

Other runtime information 352

Runtime environment variables 352

vgj.properties 354

Appendix C. Messages from the

migration tools 357

Messages from the VisualAge Generator to EGL

migration tool—Stage 1 357

Stage 1 common messages 357

Stage 1 on VisualAge for Java 360

Stage 1 on VisualAge Smalltalk 363

Messages from the VisualAge Generator to EGL

migration tool— Stage 2 364

Messages from the VisualAge Generator to EGL

migration tool—Stage 3 383

Appendix D. Messages in the

Problems view 385

Appendix E. IWN.xxx messages in the

Problems view 391

IWN.VAL messages 391

IWN.XML messages 403

Java messages for JSPs 404

Reference information for messages - name

resolution and qualification rules 404

VisualAge Generator name resolution and

qualification rules 404

EGL name resolution and qualification rules . . 406

Validation messages due to differences in name

resolution and qualification rules 408

Appendix F. Situations where

incorrect External Source Format

causes problems in creation of EGL . 411

Appendix G. Migration Database . . . 413

Creating the DB2 migration database 413

Setting the JDBC level for DB2 7.2 413

Contents vii

Setting the JDBC level for DB2 8.1 or higher . . 413

Using DB2 on Windows XP 413

Creating the migration database 413

Resetting the migration database 414

Cataloging a remote database using DB2 415

Uncataloging a remote database using DB2 . . . 416

Useful Queries 417

Appendix H. Migration tool

performance 419

Number of projects, packages, parts, and programs 420

Number of migration sets and other migration

options 421

Processor speed 422

Number of lines in function parts 422

Clean Java workspace for Stage 1 423

Disk space requirements 423

Appendix I. Required modifications if

you migrated with a previous version

of the migration tool 425

General changes 425

Changes due to the @ sign 425

Additional EGL replacements for some EZE

string functions 425

Changes due to IMS and DL/I support 426

Program part 426

PSB part and DL/I segment record 427

Function I/O - PSB name, database identifier,

scan parent, scan update, and SSAs 427

EZEDL* special function words and CSPTDLI

service routine 427

Generation option parts 429

Linkage table parts 429

Resource association parts 429

Changes due to Web transaction support 430

DataItem parts - help and label text 430

Web transaction program and UI Record parts 430

XFER statement 431

Generation option parts 431

Notices 433

Trademarks 435

Index 437

viii Rational Software Development Platform: VisualAge Generator to EGL Migration Guide

Part 1. Migration overview

© Copyright IBM Corp. 2004, 2006 1

2 Rational Software Development Platform: VisualAge Generator to EGL Migration Guide

Chapter 1. Migration Overview

The Rational® Developer or WebSphere® Developer products with the Enterprise

Generation Language (EGL) component are the successor products for VisualAge

Generator. Migration of your VisualAge Generator (VAGen) source code is required

to convert to EGL.

This migration guide provides information about planning your migration, using

the migration tools to convert your source code, and additional steps needed to

complete your migration after running the migration tools.

Terminology used in this book

EGL ships as a component of several products. This book uses the following

terminology:

developer product

Any of the products that include EGL as a component. This includes the

following products:

v Rational Web Developer

v Rational Application Developer

v WebSphere Development Studio Client Advanced Edition for iSeries™

v WebSphere Developer for zSeries

EGL development environment

The Workbench and other windows that you see after starting any of the

products that include EGL as a component.

EGL COBOL generator

Any of the products or features that provide EGL COBOL generation support

for iSeries, zSeries, or VSE. This includes the following products:

v WebSphere Development Studio Client Advanced Edition for iSeries

v EGL COBOL generation feature in WebSphere Developer for zSeries

v IBM Rational COBOL Generation Extension for zSeries

v VisualAge Generator EGL Plug-in for VSE

EGL build server

Any of the products or features that provide the EGL build server support for

iSeries or zSeries. This includes the following products:

v WebSphere Development Studio Client Advanced Edition for iSeries

v WebSphere Studio Enterprise Developer Options for z/OS

v IBM Rational COBOL Runtime for zSeries

v For VSE, there is no build server. Instead, generated VSE COBOL programs

use the same preparation process as VisualAge Generator.

EGL runtime server

Any of the products that provide EGL runtime support for iSeries or zSeries.

This includes the following products:

v WebSphere Development Studio Client Advanced Edition for iSeries

v Enterprise Developer Server for z/OS

v IBM Rational COBOL Runtime for zSeries

© Copyright IBM Corp. 2004, 2006 3

v For VSE, there is no EGL runtime server product. Instead, VSE uses the

VisualAge Generator Server for MVS, VSE, and VM with additional PTFs to

bring this product to the support level that includes EGL capability.

What is new in EGL that requires migration?

EGL includes major changes from and enhancements to VisualAge® Generator,

including the following:

v Changes to the VAGen language, including many enhancements such as new

data types, multidimensional structure field arrays, dynamic arrays, the case

statement, and improved web support.

v Changes to the user interface you use to develop your programs, including

content assist, code templates to create a part, and a text editor for most part

types.

v Changes to the generation and preparation process, including only Java™

generation rather than C++ and Java generation for distributed platforms and

the use of an EGL build server instead of preparation JCL templates for COBOL

generation.

v Changes to runtime, including the use of the EGL runtime server.

v Changes to library management, including your ability to choose your own

source code repository to interface with EGL.

The differences between the VAGen language and EGL are extensive. In the past

when you upgraded from one version of Cross System Product or VisualAge

Generator to a new version, there were only minor changes to the language. The

previous migration tools were able to migrate each part independently of any

other parts. However, due to the differences between the two languages, the

VisualAge Generator to EGL migration tool must migrate each part in the context

of other referenced or associated parts to determine the following:

v The part type of the referenced part

v Information that must move to the referencing part due to the new EGL syntax

v The location of the referenced part within the workspace

Cross-part migration is the term used to describe this situation in which the

migration of one part depends on other parts. Cross-part migration is required to

produce the best possible conversion from the VAGen language to EGL. This in

turn means that you need to carefully consider which groups of parts you migrate

together.

Given the differences between VisualAge Generator and EGL and the need for

cross-part migration, this migration is a major undertaking and needs to be

carefully planned.

Planning your migration

You need to consider the following tasks when planning your migration project:

v Plan a pilot project for migration:

– Select the developers and systems support personnel that will be involved in

the pilot project.

– Select a small subset of your source code to use in the pilot project. Use this

small subset to verify your environmental setup and your library

management procedures and tools.

4 Rational Software Development Platform: VisualAge Generator to EGL Migration Guide

– Upgrade to VisualAge Generator 4.5 with FixPak 5. Contact IBM® Support to

obtain the fix pack or check the VAGen web site at http://www-
306.ibm.com/software/awdtools/visgen/support and then follow the link in

the Download section. Also review Appendix F, “Situations where incorrect

External Source Format causes problems in creation of EGL,” on page 411 for

additional VisualAge Generator APARs that might be necessary for your

specific situation.

– Install DB2® if it is not already available. DB2 is required for the migration

database.

– Review the capabilities of the developer product that you plan to use. Be sure

that it includes the features that you require. For example:

- If you plan to generate COBOL for the z/OS environment, you must use a

developer product that includes COBOL generation for zSeries®.

- If you plan to use iSeries, you must use a developer product that includes

COBOL generation for iSeries.
– Review the prerequisites for the developer product that you plan to use. In

addition, review the prerequisites for your runtime environment. For

example:

- If you plan to generate COBOL for the z/OS environment, be sure to

review the prerequisites for the EGL build server and EGL runtime server

that you plan to use.

- If you plan to generate COBOL for the VSE environment, be sure to review

the information about prerequisites in the VisualAge Generator EGL Plug-in

for VSE Reference Manual.

- If you plan to generate Java for the UNIX® System Services (USS)

environment, be sure to review the prerequisites for the Enterprise

Developer Options for z/OS components.

- If you plan to generate for iSeries, be sure to review the prerequisites for

the runtime component of your developer product.

- If you plan to generate Java for a workstation environment, be sure to

review the prerequisites for the developer product that you plan to use.
v Make key decisions about the scope of the pilot project. For example:

– Determine if you can freeze your VAGen development and maintenance

during the actual migration. This technique enables you to migrate just the

production level of source code. If you will not be able to freeze VAGen

development and maintenance, be sure to include the following tasks in your

pilot project:

- Develop and test procedures for migrating your work-in-process source

from VisualAge Generator to EGL.

- Develop and test procedures for dual maintenance of common (shared)

parts.
– Choice of a back end source code repository.

v Build a task list, resource assignments, and schedule for the pilot project.

v Obtain education for the team that will run the pilot project:

– Developer product environment

– EGL language

– VisualAge Generator to EGL migration tools

– Your new source code repository
v Run the pilot project plan to do the following:

Chapter 1. Migration Overview 5

– Install the developer product for the pilot team, and be sure to install on a

machine that has the same regional settings as you used for developing your

VAGen programs. For example:

- If you developed your VAGen programs on a German machine, you should

install your developer product on a German machine. This ensures that the

comma used as a decimal point and German umlaut characters are

migrated correctly.

- If you developed your VAGen programs on a Chinese machine, you must

install your developer product on a Chinese machine using the same code

page. This ensures that your DBCS characters are migrated correctly.
– Determine how to organize your source code in EGL. Map this organization

to the equivalent VAGen organization. See “Determining how to organize

your EGL source code” on page 49 for considerations and recommendations.

– Run the VAGen Migration Tool for the pilot set of code. See the following

sections for information on the migration tool:

- Chapter 2, “Migration Tool Philosophy,” on page 17

- Part 2, “Migrating from VisualAge Generator 4.5 on Java to EGL,” on page

113

- Part 3, “Migrating from VisualAge Generator 4.5 on Smalltalk to EGL,” on

page 133

- Part 4, “Stages 2 and 3 — common migration steps,” on page 153

- Part 5, “Completing the migration,” on page 181
– Test your source code in the EGL development environment:

- Plan and install the connectivity required to use the EGL debug facility. If

you use any of the following when you test your VAGen programs using

the Interactive Test Facility (ITF), you need to plan how you will achieve

comparable EGL debug capabilities:

v Non-EGL programs that you need to call from ITF.

v Access to DB2 databases.

v Access to DL/I databases, which is not supported by EGL debug.

v Access to VSAM files.
- Create your EGL build parts for debug. This includes the build descriptor

options, linkage options, and resource associations parts that you need for

debug.

- Test your source code using the EGL debug facility. Be sure to test each

type of connectivity to your host environments.
– Create library management processes:

- Select and install a source code repository, including access from the

developer workstations.

- Define change management procedures that work with your corporate

culture and your selected source code repository.

- Develop any tools you need for your change management procedures,

including the following:

v Checkin and checkout procedures.

v Version control procedures.

v Tools to retrieve source code from the source code repository and to load

a workspace or directory structure if you want to use batch generation.
– iSeries COBOL target environment:

- Follow directions in the EGL Server Guide for iSeries.

6 Rational Software Development Platform: VisualAge Generator to EGL Migration Guide

– z/OS COBOL target environments:

- Install and enable TCP/IP. TCP/IP is the only method for transferring

outputs of COBOL generation to the z/OS host.

- Install prerequisites for the EGL build server and EGL runtime server

products, including any changes to your COBOL compiler and runtime.

- Install the EGL build server and EGL runtime server products.

- Install the latest PTFs for the EGL build server and EGL runtime server

products.

- Create a new set of libraries to contain the outputs of COBOL generation

and the results from the EGL build server.

- If you use CICS or IMS, create a new region for testing the EGL-generated

COBOL. This technique avoids accidentally intermixing your

VAGen-generated code with the EGL-generated code and enables you to

continue maintaining the VAGen code while you are running the pilot

project.

- Customize the EGL runtime server, including running the customization

verification programs for all of your runtime environments.

- Customize the EGL build server and pseudo-JCL build scripts. See

“Converting VAGen preparation templates and procedures to EGL build

scripts” on page 193 for details.
– VSE COBOL target environments:

- Follow the directions in the VisualAge Generator EGL Plug-in for VSE

Reference Manual.
– Java target environments:

- Review the runtime platform differences if you are changing platforms (for

example, from Windows® CICS® to Windows native). Make any code

changes that result. Based on your original and new runtime platform, see

the appropriate sections in Chapter 10, “Language and runtime

differences,” on page 209 for a list of the differences. See this same chapter

if you are changing from generating C++ to generating Java.

- Obtain JDBC support from your vendor if you are currently using ODBC

support.
– Generate and prepare your programs:

- Review and modify your build parts (build descriptor, linkage option,

resource association, linkedit and bind control parts). Based on the build

parts used for your runtime environment, see the appropriate sections in

Chapter 9, “Completing your migration,” on page 183 for details of changes

that cannot be handled by the VAGen Migration Tool.

- If you modified the VAGen reserved words, create an EGL reserved words

file.

- Optionally, build an EGL batch generation server machine. This requires

the use of a source code repository and the creation of tools to load a

directory with all the parts you need for generation.
– Testing:

- Test at least a representative sample of your generated programs to ensure

you understand any runtime differences. See “Runtime differences” on

page 209 for a list of differences.

- Test your library management procedures and tools using typical changes

that you might make to the EGL source code. Be sure to test your

procedures for changing common code, forms, dataTables, and programs

Chapter 1. Migration Overview 7

for each target environment. Also test your procedures for adding common

code, forms, dataTables, and programs for each target environment.

- Run a pilot change cycle using typical changes for several developers to

ensure that your planned library management processes are acceptable.

- Plan and test backup and recovery procedures for your source code

repository.
– Refine your library management procedures and tools based on the results of

the pilot project.

– Document the findings of the pilot project, including:

- Code changes that need to be made, particularly if you are changing target

environments.

- Changes developers need to make to any personal build descriptor parts.

- References to sections of the Migration Guide that are particularly useful

for your developers based on the problems you encountered during the

pilot project.

- Changes in runtime behavior that your end users will notice.

- Final library management and change control process.
v Build a plan to complete your migration based on the findings from the pilot

project.

v Provide education for the remaining developers:

– Developer product environment

– EGL language

– Your source code organization in EGL, including how the code is structured

into EGL projects, packages, and files

– Your new source code repository

– Your new library management process

– Your new generation process

– Mentoring, as needed, during the first few weeks of development

Determining whether you can migrate to EGL

EGL is the strategic component in the Rational Developer or WebSphere Developer

products to which VisualAge Generator customers should migrate. EGL support is

not meant to be a complete replacement for ALL functions and platforms

supported by VisualAge Generator Developer 4.5 (VAGen). Depending on your

target environment and the types of programs you have developed with VisualAge

Generator, you might need to wait for a future release of EGL.

The following list shows VisualAge Generator target environments that are

supported by EGL.

v MVS™ CICS

v MVS Batch

v IMS/VS

v IMS BMP

v Unix System Services

v Windows Native

v AIX® Native

v Linux™ on Intel® platforms

v HP-UX

8 Rational Software Development Platform: VisualAge Generator to EGL Migration Guide

v Solaris

v iSeries

In addition, VisualAge Generator EGL Plug-in for VSE V1.0 (program number

5724-L93) provides support for the following target environments:

v VSE CICS

v VSE Batch

Note: While VisualAge Generator generates Java and C++ for certain platforms,

EGL only generates Java.

For additional considerations in these supported environments, see the following:

v Special considerations for migrating to EGL — File and data base access, Table 1

on page 9

v Special considerations for migrating to EGL — User interface, Table 2 on page 9

v “VisualAge Generator features not available in EGL” on page 10

The following tables list special considerations for supported environments.

 Table 1. Special considerations for migrating to EGL — File and data base access

VAGen file and database access Special consideration

SQL Supported in EGL.

Serial, indexed, and relative

records

Supported in EGL.

Message queue records Supported in EGL.

DL/I Supported in EGL for COBOL generation for the z/OS

environments. Not supported for debug, Java

generation, or COBOL generation for the VSE

environments.

GSAM Supported in EGL.

IMS™ Message Queues Supported in EGL.

Btrieve Not supported in EGL.

Local VSAM Supported for the following:

v Java generation for AIX.

v COBOL generation.

Not supported for debug or for Java generation for other

environments.

Remote VSAM Supported for the following:

v Debug if the remote file is on CICS for z/OS or

iSeries.

v Java generation for Windows if the remote file is on

CICS for z/OS or iSeries.

v COBOL generation for CICS for z/OS or VSE CICS.

 Table 2. Special considerations for migrating to EGL — User interface

VAGen user interface Special considerations

Text user interface, including print Supported in EGL for both COBOL generation

and Java generation.

Chapter 1. Migration Overview 9

Table 2. Special considerations for migrating to EGL — User interface (continued)

VAGen user interface Special considerations

Web transactions and User Interface (UI)

records

Supported in EGL for both COBOL generation

and Java generation depending on the

environment. Not supported for IMS/VS. For

VSE CICS, see the documentation for the VSE

plug-in.

JSP and Java servlets which use VAGen

Java wrappers

v You can migrate your JSP and Java servlets

to your new developer product using the

information provided by that product.

v You can migrate your VAGen server

programs to EGL using this VAGen

Migration Guide. You can generate the Java

wrappers using EGL.

Java GUI applications or applets that do

not use VAGen parts on the free form

surface, but which use VAGen Java

wrappers.

v You can migrate your Java applications or

applets to your new developer product

using the information provided by that

product for migrating Java code from

VisualAge for Java.

v You can migrate your VAGen server

programs to EGL using this VAGen

Migration Guide. You can generate the Java

wrappers using EGL.

Java GUI applications or applets that use

VAGen parts on the free form surface.

Not supported in the current release.

Smalltalk GUI views or visual parts. Not supported in the current release. The

views with VAGen parts must be migrated to

Java-based solutions. EGL will not have any

Smalltalk-based solutions.

VisualAge Generator features not available in EGL

In addition to the special considerations listed in Tables 1 and 2, if you need any of

the features in the following list, you should assess the impact of migrating now

versus migrating in the future:

v Specialized editors and lists such as a listing of the program produced during

generation.

v Specialized functionality:

– Searching for references in a selected set of parts and limiting the search list

to a program’s associates.

– Filtering parts by part type or by subtype. EGL provides a search capability

so you might be able to search on a specific part type or subtype.
v Specialized debug support including:

– DL/I database I/O

– Calls to programs in the IMS/VS environment
v Web transaction support for the following environments:

– IMS/VS

– VSE CICS, but see the documentation for the VSE plugin for any

enhancements to its support.
v VisualAge Generator Templates.

10 Rational Software Development Platform: VisualAge Generator to EGL Migration Guide

v If you plan to use Java generation, also determine if you use CICS specific

functions that cannot be converted to native runtime environments. See

“Differences between distributed CICS and native workstation environments” on

page 214 for details of the differences.

Terminology differences

VisualAge Generator Developer on Java, VisualAge Generator Developer on

Smalltalk, and EGL all use different terminology. To help you relate the VAGen

terminology to the EGL terminology, the following six tables show the three sets of

terminology.

 Table 3. Code organization terminology differences

VisualAge Generator on

Java

VisualAge Generator on

Smalltalk

Enterprise Generation

Language (EGL)

Workspace Image Workspace

Project Configuration map EGL Project

Package Application EGL source folder and EGL

Package containing one or

more EGL files

(no comparable concept) (no comparable concept) File (generally a Java package

or a Smalltalk application will

split into multiple files). An

EGL file contains one or more

EGL parts of one or more part

types.

Class or Type Class EGL part type

Method or Member Method (no comparable concept)

VAGen part VAGen part EGL part within a file

 Table 4. VAGen parts and concepts terminology differences

VisualAge Generator on

Java

VisualAge Generator on

Smalltalk

EGL

Shared data item Shared data item Type definition to a DataItem

part

Non-shared data item Non-shared data item primitive item definition

Data item part Data item part DataItem part

Record part Record part Record part

Note: The migration tool

converts all VAGen record

definitions to EGL fixed

records to preserve VAGen

behavior.

PSB part PSB part PSBRecord part

User interface (UI) record User interface (UI) record VGUI record

Structure items (structure

of fields in a record)

Structure items (structure of

fields in a record)

Structure fields

Array (multiply occurring

item in record or map)

Array (multiply occurring

item in record or map)

Structure field array

Table part Table part DataTable part

Map group part Map group part FormGroup

Chapter 1. Migration Overview 11

Table 4. VAGen parts and concepts terminology differences (continued)

VisualAge Generator on

Java

VisualAge Generator on

Smalltalk

EGL

Map part:

v display map

v printer map

Map part:

v display map

v printer map

Form:

v textForm

v printForm

I/O option and I/O object I/O option and I/O object EGL I/O statement

Java application or applet

(GUI)

Smalltalk view or visual part

(GUI)

v Smalltalk view and visual

parts are not supported.

v Java applications and

applets are supported if you

did not use VAGen parts on

the free form surface. If you

did use VAGen parts on the

free form surface, then the

Java application or applet is

not supported in the current

release.

Generation options part Generation options part Build descriptor part

Generation option Generation option Build descriptor option

Linkage table part Linkage table part Linkage options part

 Table 5. VAGen with IDE Windows terminology differences

VisualAge Generator on

Java

VisualAge Generator on

Smalltalk

EGL

Log

v Shows error messages

v Product closes only if

you close BOTH the Log

and the Workbench

v Workspace is ALWAYS

saved when you close

the product

System Transcript

v Shows error messages

v Product closes if you close

EITHER the System

Transcript or the VisualAge

Organizer

v Image is OPTIONALLY

saved when you close the

product

Console

v Shows messages.
Problems view

v Shows messages, especially

those related to syntax

validation.

v Workspace is ALWAYS

saved when you close the

product.

Workbench

v Shows the projects and

packages in the

workspace.

VisualAge Organizer

v Shows the applications in

the image.

EGL and Web perspectives:

v Navigator and Project

Explorer views show the

projects, source folders,

packages, and files in the

workspace.

Scrapbook Workspace Scrapbook page editor

Repository Explorer Application Editions Browser If you decide to use a

repository, the repository

might have a comparable

concept.

12 Rational Software Development Platform: VisualAge Generator to EGL Migration Guide

Table 5. VAGen with IDE Windows terminology differences (continued)

VisualAge Generator on

Java

VisualAge Generator on

Smalltalk

EGL

VAGen Parts Browser

v 3 panes show package,

part type, and VAGen

parts

v Filtering and sorting is

included in the browser

VAGen Parts Browser

v 3 panes show application,

part type, and VAGen parts

v Filtering and sorting is

included in the browser

EGL and Web Perspectives:

v Navigator and Project

Explorer views show the

projects, source folders,

packages and files in the

workspace.

v Outline view shows the

parts within a file.

v EGL Parts List view

provides filtering and

sorting.

VAGen options VAGen preferences EGL preferences

VAJava options VASmalltalk preferences Other product preferences

References tool to find

parts that use a specific

part name or text string

References tool to find parts

that use a specific part name

or text string

EGL Search or File Search

Associates tool to find all

parts referenced by a

specific part

Associates tool to find all

parts referenced by a specific

part

EGL Parts Reference

 Table 6. VAGen Workspace management terminology differences

VisualAge Generator on

Java

VisualAge Generator on

Smalltalk

EGL

Repository Library None. CVS and Clear Case LT

are provided depending on

the product that you use. You

can choose your own

repository management

system.

Add / Delete Load / Unload If you decide to use a

repository, the repository

might have a comparable

concept.

Replace with Load another edition Replace with local history

Note: The repository you

decide to use might have

additional facilities.

Compare with Browse changes Compare with local history

Note: The repository you

decide to use might have

additional facilities.

 Table 7. VAGen Repository management terminology differences

VisualAge Generator on

Java

VisualAge Generator on

Smalltalk

EGL

Administrator Library Supervisor If you decide to use a

repository, the repository

might have a comparable

concept.

Chapter 1. Migration Overview 13

Table 7. VAGen Repository management terminology differences (continued)

VisualAge Generator on

Java

VisualAge Generator on

Smalltalk

EGL

Repository management:

v Purge / Restore

v Compact

Library management:

v Purge / Salvage

v Clone

If you decide to use a

repository, the repository

might have a comparable

concept.

 Table 8. VAGen source code management terminology differences

VisualAge Generator on

Java

VisualAge Generator on

Smalltalk

EGL

Ownership:

v Project owner

v Package owner

v Class owner

Ownership:

v Configuration map manager

v Application manager

v Class owner

If you decide to use a

repository, the repository

might have a comparable

concept.

Version and release Version and release If you decide to use a

repository, the repository

might have a comparable

concept.

Project:

1. A project is required.

2. VAGen Project List

Part specifies

relationships between

projects.

3. The package owner

can always release the

package to the project.

Configuration map:

1. Usage is optional.

2. Required map specifies

relationships between

configuration maps.

3. Optionally, you can

delegate the release of

applications or restrict their

release to the configuration

map manager.

Project:

1. A project is required.

2. EGL Build Path property

for the project. However,

this does not automate

loading projects together

into the workspace.

3. No comparable concept,

unless provided by the

repository.

Package:

1. No comparable

concept

2. No comparable

concept

3. No comparable

concept

4. Group members

5. Versioning the project

automatically versions

the included packages.

Application:

1. Prerequisite application

2. Subapplications

3. Privileges

4. Group members

5. You must version the

application before you

version the configuration

map

Folder or Package:

v If you decide to use a

repository, the repository

might have a comparable

concept.

Class or Type:

v Versioning the package

or project automatically

versions the included

classes

Class:

v You must version and

release the class before you

version the application

EGL part type:

v No comparable concept in

EGL.

14 Rational Software Development Platform: VisualAge Generator to EGL Migration Guide

Table 8. VAGen source code management terminology differences (continued)

VisualAge Generator on

Java

VisualAge Generator on

Smalltalk

EGL

VAGen parts:

v There is a date and time

stamp for each part

v Packages containing

duplicate part names

CAN be added to the

workspace.

v There is a duplicate

parts tool to locate the

duplicate parts

VAGen parts:

v There is a date and time

stamp for each part

v Applications containing

duplicate part names

CANNOT be loaded into

the image.

EGL parts:

v Parts are in EGL files; only

the EGL file has a date and

time stamp.

v You can have duplicate

parts in the workspace.

EGL uses a combination of

a project’s EGL build path,

the file’s import statements,

and the

containerContextDependent

property to determine the

name space that is searched

to resolve references to part

names. Part names must be

unique within the name

space. The EGL build path

for a project limits which

additional projects are

considered when looking

for a part name. The

import statement for a file

limits which additional

packages and/or parts

within the EGL build path

are considered when

looking for a part name.

The

containerContextDependent

property for a record or a

function specifies that EGL

should use the EGL build

path and import statements

for the file containing the

program rather than from

the file containing the

record or function.

References

In addition to this Migration Guide, you should check the following for additional

or more-current information:

v The web site and news group for VisualAge Generator. The web site is as

follows:

 http://www.ibm.com/software/awdtools/visgen/

v The web site and news group for EGL. The web site is as follows:

 http://www.ibm.com/developerworks/rational/products/egl/

v The web site and forum for the product that you are using.

The following also contain details beyond the scope of this Migration Guide:

v The online help system for EGL.

Chapter 1. Migration Overview 15

v The EGL Reference Guide, which describes the EGL language and the debug and

generation process. The specific book varies based on the developer product you

are using and whether you are using COBOL generation as follows:

– Rational Application Developer EGL Reference Guide Version 6.0.1 (SC31-6839-03)

– IBM WebSphere Developer for zSeries EGL Reference Guide Version 6.0.1

(SC31-6837-03).

– WebSphere Development Studio Client Advanced Edition EGL Reference Guide for

iSeries Version 6.0 (SC31-6838-01).

– VisualAge Generator EGL Plug-in for VSE Reference (SC18-9531).
v The EGL Server Guide, which describes how to set up build server and build

scripts, as well as other reference material for creating your runtime

environment. The specific book varies based on the COBOL generation product

you are using as follows:

– IBM Rational COBOL Runtime Guide for zSeries Version 6.0.1 (SC31-6951). The

equivalent Enterprise Developer Server books are WebSphere Developer for

zSeries Host Configuration Guide (SC31-6930) and IBM Enterprise Developer

Server Guide for z/OS (SC31-6306-03).

– WebSphere Development Studio Client for iSeries Advanced Edition EGL Server

Guide for iSeries Version 6.0 (SC31-6841-01).

– VisualAge Generator EGL Plug-in for VSE Reference (SC18-9531).

The following white papers are also available to assist with migration:

v For migration from VAGen on Java:

– How to Modify the EGL File Location Algorithm used by Stage 1 of the VisualAge

Generator on Java to Enterprise Generation Language Migration Tool.

– How to Consolidate Projects and Packages during Stage 1 of the VisualAge

Generator on Java to Enterprise Generation Language Migration Tool.

v For migration from VAGen on Smalltalk:

– How to Modify the EGL File Location Algorithm used by Stage 1 of the VisualAge

Generator on Smalltalk to Enterprise Generation Language Migration Tool.

– How to Consolidate Projects and Packages during Stage 1 of the VisualAge

Generator on Smalltalk to Enterprise Generation Language Migration Tool.

v For migration from either VAGen on Java or VAGen on Smalltalk:

– How to Create Records for Implicit Items when Migrating from VisualAge Generator

to Enterprise Generation Language.

– Using the Rename User Exit in the VisualAge Generator to Enterprise Generation

Language Migration Tool.

– How to Modify the Package Name in the JSP when Migrating Web Transactions

from VisualAge Generator to Enterprise Generation Language.

v For migration from Cross System Product or VisualGen:

– Migrating from Cross System Product Version 4.1 to Enterprise Generation

Language Version 6.0.1.1. While this white paper is specific to Cross System

Product Version 4.1, it includes an appendix that explains the differences

between migrating from earlier versions of Cross System Product and from

VisualGen Version 2.2.

All of the white papers are available in the ″Migrations″ section of the page at:

http://www.ibm.com/developerworks/rational/products/egl/egldoc.html

16 Rational Software Development Platform: VisualAge Generator to EGL Migration Guide

Chapter 2. Migration Tool Philosophy

The VisualAge Generator to EGL migration tool is actually a series of tools. This

chapter provides a high-level overview of the tools and describes the techniques

used by the tools.

The design of the VisualAge Generator to EGL migration tools has several major

objectives:

v Preserve the program behavior from VisualAge Generator to EGL.

v Preserve the Java project and package structure from VisualAge Generator to

EGL when appropriate.

v Preserve the Smalltalk configuration map and application structure from

VisualAge Generator to EGL when appropriate.

v Enable you to perform incremental migration of subsystems, one subsystem at a

time.

v Enable you to migrate multiple versions of your subsystems.

The design of the VisualAge Generator to EGL migration tools also has several

secondary objectives:

v Use batch mode processing as much as possible with opportunities for you to

optionally review the planned migration at critical points before proceeding to

the next step.

v Store information about the planned migration in a database so that it can be

preserved across multiple project versions and multiple subsystems. This also

enables you to save intermediate results as backup. This is important if you have

large numbers of parts in your repository.

v Provide a set of sample programs for the tool that extracts the VAGen source

from your repository and loads the migration database. You can optionally tailor

the sample programs to more accurately reflect your environment.

The design of the VisualAge Generator to EGL migration tools is based on the

following assumptions:

v Migration is from VisualAge Generator 4.5 using External Source Format that is

produced by VisualAge Generator 4.5.

v The parts to be migrated are valid VisualAge Generator parts. Programs, tables,

and map groups can be validated and/or generated in VisualAge Generator 4.5.

There are two methods for using the VisualAge Generator to EGL migration tools:

v Stage 1 to 3 migration, which is described in “Overview of the VisualAge

Generator to EGL Migration Tools” on page 18. This is the primary technique for

migrating your source code.

v Single File Migration, which is described in “Overview of Single File Migration”

on page 24. This technique is useful for migrating a few programs to verify that

your environment is working properly.

© Copyright IBM Corp. 2004, 2006 17

Overview of the VisualAge Generator to EGL Migration Tools

To achieve the objectives listed, the VisualAge Generator to EGL migration tool is

actually a series of tools that are organized into three stages as shown in the

following figure.

v The tool for Stage 1 runs in the VAGen environment. The Stage 1 tool extracts

information about the organization of your source code and the source code

itself from your Java repository or Smalltalk library. The Stage 1 tool also

determines the placement of each part in the EGL project, package, and file

organization. The Stage 1 tool loads this information into a migration database.

The VAGen source code is stored in External Source Format.

v The tool for Stage 2 runs in the EGL environment. The Stage 2 tool uses the

information that is stored in the migration database to create EGL syntax for the

VAGen parts that were stored in the migration database during Stage 1. The

Stage 2 tool stores the resulting EGL source code in the migration database.

v The tool for Stage 3 also runs in the EGL environment. For each EGL project you

want to create, the Stage 3 tool extracts the EGL source for the parts that belong

to that project and creates an EGL project in the file system for you. Optionally,

if you are only working with one version of a set of projects, the Stage 3 tool can

import the projects into your workspace.

After you have the projects in your workspace, you can then version the projects

with whatever source code repository you have decided to use. You use the tools

provided by the source code repository to manage your source code.

Migration tool terminology

To achieve a good cross-part migration, when you migrate a part, you must

provide not only the part itself but all parts that it references. For example, when

you migrate a program, you should provide not only the program, but also all the

parts that the program references. For a program, the set of parts that you need

when you migrate the program is the same set of parts that you need when you

generate the program in VisualAge Generator. This set of parts is the program’s

associates list.

In VisualAge Generator, the common techniques for providing all the parts for

generation are as follows:

v Project List Parts (PLPs) in VisualAge Generator on Java

v Configuration maps in VisualAge Generator on Smalltalk.

18 Rational Software Development Platform: VisualAge Generator to EGL Migration Guide

The migration tool makes use of these two techniques. The tool uses the following

terminology:

v If you are migrating from VisualAge Generator on Java:

– A high-level PLP project is a Java project that contains a Project List Part (PLP)

and is not referenced by any other PLP.

– A migration set consists of all the VAGen projects referenced in a Java

high-level PLP project, including all VAGen projects in the entire PLP chain

starting at the high-level PLP project.
v If you are migrating from VisualAge Generator on Smalltalk:

– A high-level configuration map is a Smalltalk configuration map that is not

listed as a required map by any other configuration map.

– A migration set consists of all the Smalltalk configuration maps listed as

required maps in a Smalltalk high-level configuration map. The migration set

includes all the configuration maps from the entire chain of Smalltalk

required maps starting at the high-level configuration map.
v A migration plan is a file that specifies the information for one or more migration

sets. If you specify a migration plan file name in your Stage 1 preferences then

all the migration sets that match your repository filters are placed in the same

migration plan file. If you do not specify a migration plan file name, then each

migration set is placed in a separate migration plan file.

Note: If you are migrating from VisualAge Generator on Java and do not currently

use PLP projects, you can create PLP projects to use just for migration.

Alternatively, you can do one of the following:

v If you have information in a database or other system that specifies what is

needed for generation in terms of Java project versions, then you can write a

tool to create the migration plan file (or files) automatically from your database.

v Create the migration plan file (or files) by hand.

If you are migrating from VisualAge Generator on Java, see the section “Migration

plans and high-level PLP projects” on page 128 for more details.

Stage 1 Details

The Stage 1 tool is shipped as a sample program with the Rational Developer or

WebSphere Developer product. You install the sample program to run on either

VisualAge Generator Developer on Java or VisualAge Generator Developer on

Smalltalk, depending on the VisualAge Generator Developer 4.5 product that you

currently use. The two sample programs differ somewhat due to the differences in

the Java and Smalltalk environments. However, the basic steps for using the Stage

1 sample programs are the same in both environments. The basic steps for Stage 1

are:

v Step 1. Define rules and preferences to direct the Stage 1 migration.

v Step 2. Run the tool and produce one or more of the following outputs:

1. One or more migration plan files

2. A report showing how each migration plan file will be migrated

3. A log file containing messages about any problems detected

4. A migration database

Step 1

Define rules and preferences that provide the Stage 1 tool with information about

what you want to migrate, including the following:

Chapter 2. Migration Tool Philosophy 19

1. How to filter Java project names so that only the projects you want to migrate

will be considered. For Smalltalk, you specify how to filter the Smalltalk

configuration map names. This improves performance for Stage 1 because the

tool only processes those Java projects or Smalltalk configuration maps that

match your filters.

v From those Java projects that match your filters, the Stage 1 tool selects any

Java projects that contain a high-level Project List Part. A Java project

contains a high-level Project List Part (PLP) if the Java project is not

referenced by any other PLPs.

v From the Smalltalk configuration maps that match your filters, the Stage 1

tool selects any high-level configuration maps. A high-level configuration

map is one that is not listed as a required map by any other configuration

map.
2. Whether you want to create one migration plan that reflects everything that

could migrate based on your filter, or whether you want to create multiple

migration plans, with one migration plan for each Java high-level PLP project

version or Smalltalk high-level configuration map version.

3. How to create the EGL project, package, and file names from the Java project

and package names or from the Smalltalk configuration map and application

names. The information you can specify includes the following:

v Rules that indicate which Java projects and packages or Smalltalk

configuration maps and applications contain common code.

v Renaming rules to be used when creating the EGL project and package

names.

v Names to be used for the EGL files that contain common parts or unused

parts.
4. The name of the migration database and the user ID and password that are

needed for access to the database.

5. Which outputs you want the Stage 1 tool to produce in Step 2. You can choose

to create all the outputs in a single step or you can create the outputs in

sequence so that you have a chance to review your rules and preferences before

creating the next, more time-consuming output.

Step 2

Based on the rules and preferences you have defined, the Stage 1 tool produces the

following possible outputs:

1. Migration plan file (or files). A migration plan file contains migration sets.

Each migration set is one high-level PLP project version from the Java

repository or one high-level configuration map version from the Smalltalk

library. The dependent Java project versions or the required Smalltalk

configuration map versions are specified in the migration set.

v If the migration preference file does not specify a value for the migration

plan filename option, then multiple migration plan files are created. Each

high-level PLP project version for Java results in one migration plan file that

contains one migration set. Similarly, each high-level configuration map

version for Smalltalk results in one migration plan file that contains one

migration set version.

v If the migration preference file specifies a value for the migration plan

filename option, then each high-level PLP project version for Java results in a

migration set entry within the single migration plan file. Similarly, each

high-level configuration map version for Smalltalk results in a migration set

entry within the single migration plan file.

20 Rational Software Development Platform: VisualAge Generator to EGL Migration Guide

v For example, consider an Order Entry system that is made up of 5 Java

projects and a sixth Java project that contains a PLP that specifies the

versions of the other 5 projects. If you request multiple migration plans and

3 versions, then 3 migration sets will be created -- one for each version of the

Java Order Entry project that contains the PLP part. Similarly for Smalltalk, if

you want to migrate 3 versions of a configuration map that reflects that code

that makes up the Order Entry system, there will be 3 migration sets -- one

for each version of this high-level configuration map

You can direct the Stage 1 tool to stop at this point so you have the opportunity

to review the migration plan file (or files) to ensure that the Java project

versions or Smalltalk configuration map versions that you want to migrate are

correctly reflected in the migration plan file (or files).

2. A report showing how each migration set will be migrated. The Stage 1 tool

can produce this report without loading the database. This helps you ensure

that your filters and preferences select the correct set of Java projects or

Smalltalk configuration maps and that you are satisfied with the naming

conventions of EGL projects, packages, and files that resulted from your

renaming rules. Reviewing the report gives you an opportunity to refine your

rules and preferences if you are not happy with the proposed EGL structure

before the Stage 1 tool actually loads the database. You can iterate through the

previous steps as many times as necessary until you are satisfied with what

will be migrated and the proposed EGL structure. The report shows the

following:

v For Java, each migration set lists the project versions that are included. For

each project version, you can see the package versions, and for each package

version, you can see a list of the VAGen parts.

v For Smalltalk, each migration set lists the configuration map versions that are

included. For each configuration map version, you can see the application

versions, and for each application version, you can see a list of the VAGen

parts.

For each VAGen part, you can see the corresponding EGL project, package, and

file name where the part will be placed. For each VAGen part, you can also see

both the associates list created by VisualAge Generator and the EGL file where

the associate is placed. See the section “Placing parts in EGL files” on page 38

for information on how the VAGen parts are assigned to files during Stage 1 –

3 migration.

3. A log file provides messages if any of the VAGen program, table, map group,

or control part names conflict with the EGL reserved word list. These parts are

not renamed during migration. You can either rename the parts in VisualAge

Generator or wait until you have migrated to EGL.

The log file also includes messages for any UI record names that conflict with

the EGL reserved word list or that starts with the # or @ symbol. UI records are

renamed during Stage 2 migration.

4. A migration database loaded with the information and VAGen source code

based on the migration plan files. You can select one migration plan to use in

loading the database or all the migration plan files in a directory. The Stage 1

migration tool loads the data base with the following:

v Information about each migration set within the selected migration plan file

(or files).

v The set of associated Java projects or Smalltalk configuration maps for the

migration set.

v The VAGen part definitions in External Source Format for each VAGen part

in the set of Java projects or Smalltalk configuration maps.

Chapter 2. Migration Tool Philosophy 21

v The corresponding EGL project, package, and file names for each Java

project, package and VAGen part or each Smalltalk configuration map,

application and VAGen part.

v A report is also created during this step so that you have a complete record

of what was loaded into the migration database. This report is in the same

format as the previous report.

The Stage 1 tool is shipped as a sample program for both the Java and Smalltalk

versions of VisualAge Generator. You can use the Stage 1 tool ″as is″ or you can

modify the sample program to better fit your environment. For example,

v You might currently store configuration information outside the Java repository

or Smalltalk library. This configuration information might specify which versions

of your source code are required for generation. In this situation, you could use

the sample programs as a guide to writing your own tool to load the migration

database from a combination of your configuration information and your Java

repository or Smalltalk library.

v You might want to change the parts placement algorithm. See “Determining how

to organize your EGL source code” on page 49 for considerations that might

cause you to modify the parts placement algorithm for the Stage 1 migration

tool.

If you modify the Stage 1 sample programs, you might want to modify the

migration database to include additional information to assist in the analysis of

your code. You can add additional columns to the existing SQL tables or you can

add additional tables to the migration database. However, these new columns and

tables will not be used in Stages 2 and 3 of migration. Additionally, if you modify

the Stage 1 sample programs, you must be sure to populate the SQL tables with

the information shown in the sample programs. If you do not, Stages 2 and 3 will

not be able to migrate your code.

See Chapter 4, “Stage 1 — Extracting from Java,” on page 115 for details about

installing and running the Stage 1 tool on VisualAge Generator Developer on Java.

See Chapter 5, “Stage 1 — Extracting from Smalltalk,” on page 135 for details

about installing and running the Stage 1 tool on VisualAge Generator Developer

on Smalltalk.

Stage 2 Details

The Stage 2 tool is shipped in the Eclipse plugin

com.ibm.etools.egl.vagenmigration and runs in the EGL environment. Because the

information you want to migrate is now in the migration database, you use the

same Stage 2 tool regardless of whether you are migrating from VisualAge

Generator on Java or VisualAge Generator on Smalltalk. The basic steps for

running the Stage 2 tool are as follows:

1. You define rules and preferences to tell the Stage 2 tool what you want to

migrate, including the following:

v Specific details about how you want your EGL source code to be created. For

example, the Stage 2 migration tool must split VAGen working storage

records into two EGL basic records:

a. A record that is named the same as the original working storage record

and which contains all the non-level 77 items.

b. A second record that is named the same as the original working storage

record with a suffix and which contains all the level 77 items.

22 Rational Software Development Platform: VisualAge Generator to EGL Migration Guide

There is a Stage 2 migration preference that enables you to specify the suffix

you want the Stage 2 tool to use whenever it creates a new record to contain

level 77 items.

v Which migration set or sets you want to migrate. For example, if you created

3 migration sets to migrate 3 different versions of the Order Entry system,

you might only want to migrate one version initially. This gives you the

flexibility to limit migration, without having to migrate everything in the

migration database at the same time.

v The name of the migration database and the user ID and password that are

needed for access to the database. Both the Stage 2 and Stage 3 migration

tools attempt the database logon with the user ID and password used to

logon to the Windows machine if the database user ID and password are not

specified explicitly.

v Whether you want to automatically start the Stage 3 tool after Stage 2

completes. If you run Stage 3 automatically, you can choose to load one

version of the EGL projects into your workspace. You can also choose to load

the EGL projects into a temporary directory so that you can interface with

your source code repository at a later time.
2. Based on the rules and preferences you have defined, the Stage 2 tool does the

following:

a. Retrieves parts for one migration set from the database.

b. Converts the External Source Format source code to EGL source code.

c. Stores the EGL source code in the migration database. Messages associated

with part migration are also stored in the migration database. This improves

performance for Stage 2 because if the same part edition is used in another

migration set, the EGL source code is already available and not converted

again.

d. Creates a log file of any potential problems that are encountered, including

generatable parts that conflict with the EGL reserved word list or

ambiguous situations that the migration tool is unable to resolve.

e. Iterates to process the next selected migration set.

The Stage 2 migration tool can be run in batch mode. See Chapter 6, “Stage

2—Conversion to EGL syntax,” on page 155 for details about installing and

running the Stage 2 tool in the EGL development environment. You cannot modify

the Stage 2 migration tool.

Stage 3 Details

The Stage 3 tool is shipped in the same Eclipse plug-in

(com.ibm.etools.egl.vagenmigration) as the Stage 2 tool and also runs in the EGL

environment. Because the information you want to migrate is now in the migration

database, you use the same Stage 3 tool regardless of whether you are migrating

from VisualAge Generator on Java or VisualAge Generator on Smalltalk. The basic

steps for running the Stage 3 tool are as follows:

1. You define rules and preferences to tell the Stage 3 tool what you want to

migrate, including the following:

v Which migration set or sets you want to migrate. For example, if you created

3 migration sets to migrate 3 different versions of the Order Entry system,

you might have migrated all 3 versions through the Stage 2 tool, but only

want to migrate one version through the Stage 3 tool. The most common

reason for doing just one version in Stage 3 is that you want to version this

code in your source code repository, then migrate the next version with the

Stage 3 tool and version it in your source code repository.

Chapter 2. Migration Tool Philosophy 23

v The name of the migration database and the user ID and password that are

needed for access to the database.
2. Based on the rules and preferences you have defined, the Stage 3 tool does the

following:

a. Creates a ″to do″ list for the migration set. This ″to do″ list contains a

consolidated list of the messages produced by Stage 2 that might require

you to perform additional tasks to complete the migration.

b. Creates the EGL project and package structure in your workspace based on

the information stored in the migration database during Stage 1.

c. Creates the .egl source files based on the EGL source code that was stored

for the VAGen parts during Stage 2. The .egl source files include most

import statements that are needed to resolve EGL part references. See “EGL

build path and import statements” on page 35 for details about the import

statements.

d. Creates the .eglbld files based on the EGL XML source that was stored for

VAGen control parts during Stage 2. The control parts are generation

options (EGL build descriptor parts), linkage options, resource associations,

bind control and linkedit parts.

e. Refreshes the workspace so that EGL validation runs.
3. At this point you should do the following:

a. Optionally, version or commit the EGL projects into your source code

repository to establish a baseline that reflects the code exactly as it was

migrated.

b. Review the workspace for any messages in the Problems view to see if there

are any validation errors. You can do this in conjunction with the log

produced in Stage 2 or the ″to do″ list produced in Stage 3.

c. Generate (without preparing) all programs and dataTables to ensure proper

migration for your target environment. When you generate the programs, be

sure to use the genFormGroup and genHelpFormGroup build descriptor

options so that all your formGroups are generated. This step is optional, but it

is strongly recommended.

d. Version or commit the EGL projects into your source code repository to

establish a new baseline that reflects any code changes you made to resolve

problems.

e. Generate and test the migrated code. This step is also optional, but it is

strongly recommended.

The Stage 3 migration tool can be run in batch mode. See Chapter 7, “Stage 3 —

Import,” on page 171 for details about running the Stage 3 tool on EGL. The Stage

3 tool is installed automatically at the same time you install the Stage 2 tool. You

cannot modify the Stage 3 migration tool.

Overview of Single File Migration

When you are first getting accustomed to EGL and setting up your environment,

you might want to migrate just a few programs to verify your environment, ensure

generation and preparation are working properly, and ensure your runtime

environment is properly configured for EGL. In this case, you might not want to

go through the full Stage 1 to 3 migration. The Stage 2 migration tool provides a

mechanism for you to migrate programs using what is called single file migration

as shown in the following figure:

24 Rational Software Development Platform: VisualAge Generator to EGL Migration Guide

Single file migration is a more manual process than Stage 1 to 3 migration. In

single file mode, you use VisualAge Generator to export External Source Format

source code to a file. Then you use the EGL development environment to create an

EGL project and EGL package. You can then use the Import wizard to import the

External Source Format file into EGL source. The single file migration tool runs

and does the following:

v Creates the target EGL source file, if it does not exist. If the file does exist, you

have the option to overwrite or append to the file. Depending on your

preferences and the parts contained in the External Source Format file, the

migration tool might create additional EGL files.

v Converts the External Source Format source code to EGL source code.

v Creates a log file of any potential problems that are encountered, including

generatable parts that conflict with the EGL reserved word list or ambiguous

situations that the migration tool is unable to resolve.

The External Source Format to EGL conversion that occurs during single file

migration is essentially the same syntax conversion that occurs during Stage 2 of

the Stage 1 to 3 migration. However, single file migration has several limitations

that do not make it suitable for large scale migrations. The limitations include:

v Only parts in the single External Source Format file are considered during

migration. To achieve the best possible migration, include a program with all its

associates in the External Source Format file.

v The placement of VAGen parts into files is different from that of Stage 1 – 3

migration. In single file mode, assuming you specified targetFile.egl as the target

EGL file name, the following occurs:

– All control parts are placed in a file called targetFile.eglbld.

– Each UI record is placed in a file by itself called uiRecordName.egl, where

uiRecordName is the name of the UI record.

– If you do not select the preference to separate generatable parts into EGL

files, all the remaining parts are placed in a file called targetFile.egl.

– If you select the preference to separate generatable parts into EGL files, the

following occurs:

- Each program part is placed in a file called programName.egl, where

programName is the name of the program.

- Each table part is placed in a file called tableName.egl, where tableName is

the name of the table.

- Each map group and all maps in the map group are placed in a file called

mapGroupName.egl, where mapGroupName is the name of the map

group.

Chapter 2. Migration Tool Philosophy 25

- All the remaining parts are placed in a file called targetFile.egl. targetFile

can be the same as programName.egl if you want to place all the remaining

parts in the same file as the program. There is no attempt to determine

which parts are shared by multiple generatable parts.
– All the files are placed in same EGL project, source folder, and package.

v Because all the output files are placed in the same EGL package, the migration

tool does not include any import statements. In addition, because all the parts

are placed in the same EGL package, your original Java project and package

structure are not preserved. Similarly, your original Smalltalk configuration map

and application structure are not preserved.

v If the same part occurs multiple times in the External Source Format file, only

the last definition is migrated.

v There are four alternative techniques for dealing with common parts when

migrating in single file mode. Be sure you understand the disadvantages of each

technique before choosing one of them. The four techniques are as follows:

– If you migrate one large External Source Format file containing several

programs and their associates, you can only specify one targetFile name.

Assuming you selected the Migration Preference to Separate parts into EGL

files, the migration tool places the data items, functions, PSBs, and non-UI

records into the single target file. Even if the programs share common parts

so that the same associate appears multiple times in the file, the migration

tool only migrates one definition of the part. Therefore, you will not have any

duplicate parts using this technique. However, if the programs have

numerous associated parts, the targetFile can be quite large.

– If you migrate two External Source Format files to the same EGL package and

the two files contain the same part and you specify different targetFile

names, you will have duplicate parts that cannot be resolved by EGL. This

happens if you migrate a file with Program1 and its associates and a second

file with Program2 and its associates and the two programs share some

common parts. The migration tool places the common parts in both

targetFiles. You can avoid this problem by migrating each program with its

associates to a separate EGL package. This still results in duplicate parts in

the workspace, but because they are in different packages, EGL is able to

resolve the part references.

– If you migrate two External Source Format files to the same EGL package and

the two files contain the same part and you specify the same targetFile

name, you are prompted for whether you want to overwrite the existing

targetFile in the workspace.

- If you specify that you do not want to overwrite the existing targetFile,

then any data items, functions, PSBs, and non-VGUI records in the second

import are added to the targetFile. All the common parts in the second

import result in duplicate parts within the targetFile.

- If you specify that you want to overwrite the existing targetFile, then any

data items, functions, PSBs, and non-VGUI records in the second import

completely replace the targetFile. This results in the loss of any parts

included in the first import, but not included in the second import.

- If you selected the Migration Preference to Separate parts into EGL files, the

migration tool overwrites the files created for programs, formGroups, and

dataTables. If you did not select the preference, then these parts are placed

in the targetFile and added or overwritten based on your response to the

overwrite prompt.

- The migration tool always overwrites the files for VGUI records and .eglbld

files.

26 Rational Software Development Platform: VisualAge Generator to EGL Migration Guide

Similarly to the first technique, you can avoid this problem by migrating each

program with its associates to a separate EGL package. This still results in

duplicate parts in the workspace, but because they are in different packages,

EGL is able to resolve the part references.

– If you split the common parts out into a separate External Source Format file,

you might not have all the information necessary to do a good VisualAge

Generator to EGL migration on a single-file basis. For example, if you have an

SQL record in one External Source Format file, and a function that uses

modified SQL for the record is in a different file, the migration tool cannot

completely build the I/O statement for the function. In addition, if the

common parts are in a different package, you must add EGL import

statements to each file that needs to reference the common package (or

packages).
v Additional processing that is done by Stages 2 and 3 is also not performed in

single file mode. Some examples are as follows:

– Forms are not nested within formGroups.

– Only one line is included between the parts in the output files.

See “Migration challenges” on page 27 and “Techniques used by the VisualAge

Generator to EGL Migration Tool” on page 32 for a better understanding of the

differences between single file migration and Stage 1 to 3 migration.

Migration challenges

There are several differences between the VisualAge Generator and EGL

approaches to writing and managing source code. The following differences are of

particular importance to migration:

v EGL syntax in some cases is more precise than VisualAge Generator

v Differences in when and how part references are resolved

v Differences in handling common code

These differences are explained in more detail in the following sections.

Precise EGL syntax

Even though the syntax of the two languages differs greatly, the VAGen language

can, for the most part, be migrated to the EGL language while preserving the same

behavior as the original VAGen program. However, there are number of situations

in which the EGL syntax is more precise or more restrictive than in VisualAge

Generator. These situations are rare in typical programs. However, when they do

occur, the migration tool requires cross-part migration to determine the exact EGL

syntax that preserves the behavior you required in VisualAge Generator. Cross-part

migration means that the migration tool needs to have one or more other

referenced parts available to be able to do a correct migration of the current part.

The following are some examples:

v In VisualAge Generator you use the DISPLAY I/O option for both display (text)

and printer maps. EGL provides the display statement for text forms and the

print statement for print forms. To facilitate migration from VisualAge

Generator, there is an EGL preference to indicate that you want VisualAge

Generator Compatibility. The VisualAge Generator Compatibility preference

permits the use of the display statement for print forms. During migration, if the

program, its map group, and the map are all available, then the migration tool

can determine whether to migrate to a display or print statement. However, if

the DISPLAY function is being migrated without a program, then the migration

Chapter 2. Migration Tool Philosophy 27

tool cannot definitively determine whether to use an EGL display or print

statement. In this situation, the migration tool uses the display statement

because it is tolerated for print forms in VisualAge Generator Compatibility

mode.

v In VisualAge Generator you use the SET map PAGE statement for both display

(text) and printer maps. This causes the screen to be cleared if the next

CONVERSE or DISPLAY is for a display map and a page eject if the next

DISPLAY is for a printer map. EGL provides the clearScreen system library

function for text forms and the pageEject system library function for print forms.

The VisualAge Generator Compatibility preference does not affect the use of

clearScreen or pageEject. During migration, if the program, its map group, and

the map are all available, then the migration tool can determine whether to

migrate to the clearScreen or pageEject system library function. However, if the

SET map PAGE statement is used in a function that is being migrated without a

program, then the migration tool cannot definitively determine whether to use

the clearScreen or pageEject system library function. In this situation, the

migration tool uses EZE_SETPAGE, which is intentionally invalid EGL syntax.

This results in an error in the Problems view so that you are aware you need to

correct the function.

v In VisualAge Generator, you can specify either an edit table or an edit function

as the edit routine for a map variable field. You cannot specify both. In EGL,

you can specify both the validatorDataTable and the validatorFunction

properties. If the edit table or the edit function is available during migration, the

migration tool can determine whether to set the validatorDataTable or the

validatorFunction property. However, if the part specified by the edit routine is

not available, the migration tool cannot definitively determine whether to set the

EGL validatorDataTable or validatorFunction property. In this situation, the

migration tool attempts to determine whether the edit routine is a table or

function by using information such as the length of the edit routine name and

the existence of an edit message. If the migration tool still cannot make a

determination, it uses the validatorFunction property. There will only be an error

in the Problems view if the validatorFunction is not a function or cannot be

found.

The migration tool uses all the available parts in the migration set to resolve

ambiguous situations. To minimize these ambiguous situations, always include

associated parts when you migrate. For example, when you migrate a program, be

sure to include all the parts that you need to generate the program in VAGen. This

ensures the best possible migration of your parts. For an overview of how the

migration tool resolves ambiguous situations, see the following sections:

v “Migrating with a program” on page 41

v “Migrating with associated parts” on page 42

v “Migrating without associated parts” on page 43

See Chapter 3, “Handling ambiguous situations,” on page 61 for a complete list of

the situations where the migration tool must do cross-part migration to achieve a

correct migration and the steps the migration tool takes to try to make an

intelligent choice if the additional parts are not available.

When and how part names are resolved

At definition time, VisualAge Generator does not require that all parts exist. In the

program structure diagram, VisualAge Generator indicates missing maps, records,

tables and functions with a question mark. However, in other places such as the

use of a shared data item, there is no indication if the part does not currently exist.

28 Rational Software Development Platform: VisualAge Generator to EGL Migration Guide

When you save a part in VisualAge Generator, there is some basic syntax

validation, but there is no cross-part validation until you test, validate, or generate.

In EGL, whenever you save a file, there is more extensive validation -- including

validation that all part names can be resolved. This gives you the earliest possible

warning when there is a problem.

VisualAge Generator searches all parts in the workspace to find a particular part

name. If there are duplicate part names in VisualAge for Java, then test and

generation stop until the duplicate part problem is fixed. VisualAge for Smalltalk

does not permit you to load duplicate parts into the image. In EGL, you are

permitted to have duplicate part names in your workspace. EGL uses a

combination of the EGL build path for a project, import statements in a file, and

the containerContextDependent property for records and functions to determine

which definition of a part to use.

When you migrate using Stage 1 to 3 migration, the migration tool sets the EGL

build path for projects and includes import statements in files based on the

available parts in the migration set. To obtain the correct EGL build path and

import statements, always include all the associated parts when you migrate. For

example, when you migrate a program, be sure to include all the parts that you

need to generate the program in VisualAge Generator. This ensures the best

possible migration of your parts. See the following sections for more details:

v “EGL build path and import statements” on page 35

v “containerContextDependent Property” on page 36

Common code scenarios

Common code is code that is shared between subsystems or programs. The

following figure shows common code that is shared by two subsystems.

Corporate Common Code

SubsystemA SubsystemB

Corporate
Common Code
shared by both

Subsystems

In this case, there are one or more Java projects or Smalltalk configuration maps

that contain Corporate Common Code. The code in these projects or configuration

maps can be shared by multiple subsystems. In this example, SubsystemA and

SubsystemB use subsets of the common code. Some of the Corporate Common

Code is used by both subsystems. For example, Corporate Common Code might

include SQL record definitions that are used by many subsystems.

The next figure shows the same basic sharing of Corporate Common Code by the

two subsystems, with SubsystemA shown in more detail.

Chapter 2. Migration Tool Philosophy 29

Corporate Common Code

SubsystemA SubsystemB

SubsystemA
Common Code

Program1

Program2

SubsystemA has SubsystemA Common Code that is used by multiple programs

within SubsystemA, but only by programs within SubsystemA. In this case,

Program1 and Program2 each make use of some of the SubsystemA Common Code

as well as some of the Corporate Common Code. Between the two programs, there

is some overlap of both the SubsystemA Common Code and the Corporate

Common Code, including overlap with Corporate Common Code that SubsystemB

uses. For example, SubsystemA Common Code might include SQL record

definitions that are used only by programs within SubsystemA. SubsystemA

Common Code might also include a map group definition that is used by several

programs within SubsystemA.

Common code and VisualAge Generator

To facilitate the use of common code, VisualAge Generator determines at test and

generation time how a particular piece of source code should be interpreted. The

advantage of this is that each subsystem or program can make slight variations in

the code, just by varying the specific map group that a program uses or by varying

data item or record definitions that are in the workspace during generation. The

following are three examples:

v Much of the same logic can be shared by an online program that interacts with a

terminal and a batch program that prints a similar report as follows:

– ProgramA is main transaction program using MapGrpA which contains

display maps named HEADER, DETAIL, and TRAILER. ProgramA displays

the partial HEADER map, displays DETAIL lines in a floating area, and then

converses the TRAILER map which contains an input field where the user can

request the next report. ProgramA uses the SET™ HEADER PAGE statement

to clear the screen.

– ProgramB is a main batch program using MapGrpB which contains printer

maps named HEADER, DETAIL, and TRAILER. Program B produces a

hardcopy version of the same report that ProgramA displays on a terminal.

ProgramB displays the partial HEADER map, displays the DETAIL print lines

in a floating area, and then displays the TRAILER map at the bottom of the

page. ProgramB uses the SET HEADER PAGE statement to force a page eject.

– The number of lines in the floating area differs between the main transaction

and the main batch programs. However, the logic for data retrieval, data

manipulation, and displaying the HEADER and DETAIL maps is the same for

both programs. Because of this, ProgramA and ProgramB were designed to

use common functions to retrieve data from the database, manipulate the

data, and display the HEADER and DETAIL maps.

30 Rational Software Development Platform: VisualAge Generator to EGL Migration Guide

– This common code technique works in VisualAge Generator because the same

DISPLAY I/O option can be used for both display and printer maps. In

addition, the same SET HEADER PAGE statement can be used for both

display and printer maps. VisualAge Generator interprets the DISPLAY I/O

option and the SET map PAGE statement based on the specific program it is

testing or generating.

– EGL requires different statements for display and print forms -- display and

clearScreen for a text form; print and pageEject for a print form. In VisualAge

Generator Compatibility mode, the display statement is tolerated for a print

form. However, even in VisualAge Generator Compatibility mode, clearScreen

only applies to text forms and pageEject only applies to print forms.
v A less typical example is the use of a common error handler function called

SET-MESSAGE-TEXT which retrieves message text from a VAGen table called

MSGTBLE and stores it in a function parameter called MESSAGE-TEXT, where

MESSAGE-TEXT is a shared data item.

– Assume that SubsystemA and SubsystemB run in different CICS regions. In

this case, the two subsystems can each provide their own definition of the

MSGTBLE and their own definition of the MESSAGE-TEXT shared data item

which is used as a function parameter. This might occur if the subsystems

provide different size error message fields on their respective map definitions.

– VisualAge Generator uses the definition that is currently loaded in the

workspace when it generates a program. As long as each subsystem always

loads its own definition of the MESSAGE-TEXT data item into the workspace

before test or generation, VisualAge Generator will use the definition that is

correct for that subsystem. The disadvantages of this technique are that you

must control what is in the workspace when you generate and you cannot

have both subsystems in the workspace at the same time.

– EGL permits you to have both subsystems in the workspace at the same time.

In this situation, EGL uses a combination of the EGL build path, import

statements, and the containerContextDependent property for the

SET-MESSAGE-TEXT function to resolve the reference to the MESSAGE-TEXT

dataItem part definition.
v A slightly different example is the use of a common error record called

ERROR-RECORD which contains a shared data item called MESSAGE-TEXT2.

– Assume that SubsystemA and SubsystemB have different definitions of

MESSAGE-TEXT2. This might occur if the subsystems need to build message

text for different screen sizes.

– VisualAge Generator uses the definition that is currently loaded in the

workspace when it generates a program. As long as each subsystem always

loads its own definition of MESSAGE-TEXT2, VisualAge Generator will use

the definition that is correct for that subsystem. The disadvantages of this

technique are similar to the SET-MESSAGE-TEXT function example. You must

control what is in the workspace when you generate and you cannot have

both subsystems in the workspace at the same time.

– EGL permits you to have both subsystems in the workspace at the same time.

In this situation, EGL uses a combination of the EGL build path, import

statements, and the containerContextDependent property for the

ERROR-RECORD to resolve the reference to the MESSAGE-TEXT2 dataItem

part definition.

Common code and the migration tool

Common code is generally code that is used in many programs. You need to

include the common code in every migration set because it influences the

migration tool in the following ways:

Chapter 2. Migration Tool Philosophy 31

v If common code is available, the migration tool is able to resolve most

ambiguous situations. This minimizes or eliminates the code changes you must

do manually.

v If common code is available, the migration tool can properly set the EGL build

path for projects and include the correct import statements for your EGL files.

This minimizes the number of EGL build path changes and additional import

statements you must do manually.

v The first time the migration tool migrates a part version, the tool stores the EGL

created for the part into the migration database. The original External Source

Format is also retained in the migration database. If another migration set uses

the same part version, the migration tool uses the original External Source

Format for reference when creating EGL for the new parts in the additional

migration set, but does not convert the part to EGL again. The migration tool

also uses the EGL for the part version when building the EGL projects, packages,

and files for the additional migration set. This technique provides the necessary

reference information for the migration tool to resolve ambiguous situations

during cross-part migration, while improving performance by only migrating

each part version one time.

To ensure the best possible migration, when you are migrating a subsystem, you

should always include Corporate Common Code and the Subsystem Common

Code in your migration set.

Techniques used by the VisualAge Generator to EGL Migration Tool

Overview of techniques

There are a number of techniques that the migration tool uses to determine the

corresponding EGL syntax and to preserve the VisualAge Generator behavior.

These techniques are as follows:

v Editor and build descriptor preferences

v Program properties

v EGL build path and import statements

v containerContextDependent property

v EGL reserved word list

v Placing parts in EGL files

v Migrating with a program

v Migrating with associated parts

v Migrating without associated parts

v Controlling the order for processing migration sets

v Overwriting and merging files

These techniques are explained in the following sections. There are also some

general rules that govern the migration tool.

Editor and build descriptor preferences

Before you start Stage 2 of migration, you should turn on the VisualAge Generator

Compatibility preference for your workspace. The EGL VisualAge Generator

Compatibility preference provides support for the following VAGen behaviors:

v Use of the hyphen (-) and national language characters @ and # in part names.

However, these characters are not permitted as the first character of a name even

in VisualAge Generator Compatibility mode.

32 Rational Software Development Platform: VisualAge Generator to EGL Migration Guide

v The primitive data types numc and pacf

v Defaulting the subscript to 1 for single dimension structure-field arrays

v The deleteAfterUse property on a use declaration for a dataTable, which is the

replacement for keep after use

v The SQL field property sqlDataCode

v The call statement options of externallyDefined and noRefresh, which are the

replacements for the NONCSP and NOMAPS options

v The transfer and show statement externallyDefined option, which is the

replacement for the NONCSP option on DXFR and XFER statements

v A display printForm statement is implemented the same as a print printForm

statement

v The initial value of a form field is used only when displaying a field on the

screen that has not had a value assigned to it. The preference does not set the

initial value of the field in storage.

v Even precision for decimal fields (VAGen PACK fields) is incremented by 1

except for host variable references in SQL WHERE clauses and the EGL prepare

statement.

The EGL VisualAge Generator Compatibility preference provides the following

replacements for EZE data words:

v The VGVar.handleSysLibraryErrors system variable, which is the replacement

for EZEREPLY

v The dliVar.handleHardDLIErrors system variable which is the replacement for

EZEDLERR

v The ConverseVar.segmentedMode system variable, which is the replacement for

EZESEGM

v The VGVar.sqlIsolationLevel system variable, which is the replacement for

EZESQISL.

v The VGLib.getVAGSysType system function, which provides the old VAGen

values for EZESYS

The EGL VisualAge Generator Compatibility preference provides the following

replacements for EZE function words:

v The VGLib.connectionService system function, which is the replacement for

EZECONCT

The VAGen migration tool automatically adds the vagCompatibility=″YES″ option

to every VAGen generation option part that it migrates to an EGL build descriptor

part. The vagCompatibility build descriptor option directs generation to provide

the same support as the VisualAge Generator Compatibility preference.

Note: If you think that you might want to eliminate the use of VisualAge

Generator Compatibility mode in the future, see “Eliminating the use of

VisualAge Generator Compatibility mode” on page 201 for details before

you migrate. For example, if you need to eliminate hyphen, @, or # from

your part names, you might want to use a Rename User Exit during

migration.

There are preferences that enable you to minimize the migration tool’s use

of VisualAge Generator Compatibility mode. For example, you can specify

that the migration tool should not add the vagCompatibility=″YES″ build

Chapter 2. Migration Tool Philosophy 33

descriptor option to every VAGen generation option part. For details, see

“VAGen Migration Preferences” on page 157.

Regardless of how you set the preferences, the migration tool always

turns on VisualAge Generator Compatibility mode when refreshing the

workspace.

Program properties

There are five program properties that the migration tool includes for every

program:

v includeReferencedFunctions = yes. The migration tool always includes this program

property so that functions do not have to be nested within the program. This

enables you to keep just one copy of common functions in a separate project or

package and import them, rather than including the common functions in each

program. When you use Stage 1 – 3 migration, the migration tool also includes

any necessary import statements for functions that are in a different package

from the program.

v allowUnqualifiedItemReferences = yes. The migration tool always includes this

program property so that references to fields (VAGen data items) do not need to

be qualified. The EGL rules for unqualified fields incorporate the VAGen rules

so that unqualified fields resolve to the same record, dataTable (VAGen table) or

form (VAGen map) as in VisualAge Generator. The migration tool does not add

qualifications.

v localSQLScope = yes. The migration tool always includes this program property

even though yes is the default value. The naming conventions that the migration

tool uses to create the result set ID and the prepare statement ID do not

guarantee uniqueness across programs. Therefore, localSQLScope = yes is

required to preserve VAGen behavior.

v throwNrfEofExceptions = yes. The migration tool always includes this program

property so that NRF (noRecordFound) and EOF (endOfFile) are treated as error

conditions. In EGL, NRF and EOF are not normally treated as error conditions.

Therefore, throwNrfEofExceptions = yes is required to preserve VAGen behavior.

v handleHardIOErrors = no. The migration tool always includes this program

property so that the default value for VGVar.handleHardIOErrors is set to 0.

VGVar.handleHardIOErrors is the replacement for EZEFEC. The normal EGL

default value for VGVar.handleHardIOErrors is 1. However, the VAGen default

value for EZEFEC is 0. Therefore, handleHardIOErrors = no is required to

preserve VAGen behavior.

The migration tool includes the @DLI complex property for every DL/I or IMS

program and sets the following properties:

v psb = ″psbVariableName″. The migration tool includes this program property to

specify the name of the variable that provides the name of the PSB record part.

The migration tool always uses psb as the variable name.

v callInterface = DLICallInterfaceKind.CBLTDLI. The migration tool includes this

program property to ensure that CBLTDLI is used as the call interface. CBLTDLI

provides the same call interface that is used by VisualAge Generator. EGL uses

AIBTDLI as the default call interface. If you want to use AIBTDLI, you must add

PCB Name information to your IMS PSBs and your EGL PSB record parts.

v handleHardDLIErrors = no. The migration tool includes this program property so

that the default value for dliVar.handleHardDLIErrors is set to 0.

dliVar.handleHardDLIErrors is the replacement for EZEDLERR. The normal EGL

34 Rational Software Development Platform: VisualAge Generator to EGL Migration Guide

default value for dliVar.handleHardDLIErrors is 1. However, the VAGen default

value for EZEDERR is 0. Therefore handleHardDLIErrors = no is required to

preserve VAGen behavior.

v pcbParms = [list of PCB parameters]. If the VAGen program includes

EZEDLPCB[n], where n is a numeric literal, as a called parameter, the migration

tool includes the pcbParms property to provide the mapping of the input PCB

parameters to the PCBs in the program’s PSB record part.

EGL build path and import statements

EGL enables you to have multiple definitions for a part name in the workspace at

the same time. The EGL build path for a project limits which other projects will be

considered when looking for a part name. The import statement in a file

determines which packages, other than the current package, and which parts

within the EGL build path will be considered when looking for a part name.

In most situations, the EGL build path and import statements are sufficient to

resolve any part references. For example, the EGL build path and import

statements for a program are sufficient to resolve a record name if you use the

record as a type definition in a record declaration in a program. The EGL build

path and import statements are also sufficient to resolve dataItem part references if

you only have one definition of the dataItem part that can be used with a record

definition, function local storage or function parameter list.

For example, you might be working on SubsystemA and SubsystemB which have

two different definitions of RECORDX. All programs in SubsystemA need to use

the SubsystemA definition of RECORDX. This can be achieved as follows:

v The EGL build path property for projects in SubsystemA needs to include the

project that provides SubsystemA’s definition of RECORDX.

v Files for programs in SubsystemA that use RECORDX as a type declaration for a

record need to include an import statement for the package within SubsystemA

that contains the definition of RECORDX.

The EGL build path property for the SubsystemA projects limits the projects that

will be searched to just the projects within SubsystemA and the common projects.

The import statements in the files within SubsystemA limit which packages within

the EGL build path will be considered. Even if RECORDX uses dataItem part

ITEM1 as a type definition and the two subsystems have different definitions of

ITEM1, the EGL build path and import statements are sufficient to resolve the

references to ITEM1. The project that contains RECORDX in each subsystem must

specify an EGL build path property that includes the subsystem project that

contains that corresponding subsystem definition of ITEM1. The file containing

RECORDX in each subsystem must have an import statement that specifies the

subsystem package that contains the corresponding subsystem definition of ITEM1.

When you use Stage 1 – 3 migration, the migration tools do the following based

on the parts in the migration set:

v Set the EGL build path for each project based on the parts the project needs to

reference in other projects.

v Include most import package statements for each file based on the parts the file

needs to reference in other packages within the EGL build path for the project

that contains the file. These import statements are based on the part associates

that were determined by VisualAge Generator during Stage 1 of migration.

v The migration tool adds import statements for data item parts. During Stage 2

migration, the migration tool determines if a data item part has an edit routine.

Chapter 2. Migration Tool Philosophy 35

If the table or function specified as the edit routine is included in the migration

set, then the migration tool updates the migration database to include the part

specified as the edit routine as an associate of the data item.

v The migration tool adds import statements for UI records. During Stage 2

migration, the migration tool determines if any field in the UI record specifies

program link information. If so and the referenced program and first UI record

are included in the migration set, then the migration tool updates the migration

database to include the program and first UI record as an associates of the UI

record.

v The migration tool adds import statements for functions. During Stage 2

migration, the migration tool determines if any statement in the function

explicitly references a table. If so and the referenced table is included in the

migration set, then the migration tool updates the migration database to include

the table as an associate of the function.

v The migration tool does not add import statements for the following situations

because these are not associates in VisualAge Generator:

– For a function that transfers to a program using a CALL, DXFR, or XFER

statement. If you are generating for Java, you must add the import statement

for the package containing the program within the file containing the function

or fully qualify the program name with the package name. Alternatively, you

can use an entry in a linkage options part to specify the name of the package

where the program is located.

– For build parts in .eglbld files. VAGen control parts, such as the generation

options parts, do not list their associated parts, so the information is not

readily available to the migration tool. In addition, due to the way EGL

processes build descriptor parts, you will likely need to do some reordering

of the nextBuildDescriptor values (VAGen /OPTIONS). This reordering will in

turn require modification of any imports the migration tool might have done.

Note: The Stage 1 migration tool analyzes the parts in the migration set to

determine the associates for each part. To ensure that only parts for the

migration set are included in the analysis, the Stage 1 migration tool

deletes any Java projects from the workspace before loading the migration

set specified by a high-level PLP project. Similarly, the Stage 1 migration

tool deletes any Smalltalk configuration maps before loading the

migration set specified by a high-level configuration map. Because the

analysis of associates is limited to the migration set, the migration tool

does not set the EGL build path property to specify EGL projects that are

not included in the migration set. In addition, the migration tool does not

include import statements for EGL packages that are not included in the

migration set.

When you use single file migration, the migration tool functions as follows:

v Does not set the EGL build path because the output is always going into a single

existing project.

v Does not include the import package statements because all the files that are

created go into the same package. Thus, no import statement is required.

containerContextDependent Property

Note: This section describes a capability that is only partially implemented in EGL

version 6.0.1. If you specify containerContextDependent for a function, the

resolution of function invocations within that function occurs at generation

time (not at development time) and includes reference to the name space of

36 Rational Software Development Platform: VisualAge Generator to EGL Migration Guide

the program or PageHandler that uses the invoking function. At this time,

containerContextDependent has no effect on name resolution for record or

dataItem parts.

The description that follows reflects what is intended for the final

implementation.

As described in “EGL build path and import statements” on page 35, the EGL

build path and import statements are generally sufficient to provide the part name

resolution that you need. However, EGL expects to resolve all part name references

whenever you save a file. EGL adds an error message to the Problems view if it

cannot resolve the part name. Depending on your architecture, you might also

need to use the containerContextDependent property for records or functions.

Consider the situation where RECORDX is used as the type definition for a

function parameter in FUNCTIONY. Assuming that RECORDX and FUNCTIONY

are in different projects and packages, EGL expects the following:

v The EGL build path for the project that contains FUNCTIONY must include the

project that contains the definition of RECORDX.

v The file containing FUNCTIONY must include an import statement for the

package that contains RECORDX.

If all subsystems have the same definition of RECORDX, then the EGL build path

and import statements are sufficient, and EGL can resolve the part reference for

RECORDX whenever you save the file containing FUNCTIONY.

However, consider the situation in which SubsystemA and SubsystemB both use

FUNCTIONY, but have different definitions of RECORDX. In this situation, the

EGL build path and import statements cannot point to both subsystems at the

same time. EGL supports the containerContextDependent property for functions. In

this situation, you can specify containerContextDependent=yes for FUNCTIONY. This

specifies that the part name references for the function parameters and local

storage are not to be resolved until FUNCTIONY is used within a program. When

you test or generate a program that uses FUNCTIONY, the EGL build path of the

project containing the program and the import statements of the file containing the

program determine where to find the definition of RECORDX. Using

containerContextDependent=yes enables you to achieve the same flexibility provided

by VisualAge Generator for the function. The EGL build path for each project in

the subsystem and the import statement for any files containing programs in the

subsystem point to that subsystem’s definition of RECORDX.

The containerContextDependent property is also supported for record parts. For

example, SubsystemA and SubsystemB might both use the same definition of

RECORDZ. However, RECORDZ uses a type definition that references the

dataItem part called ITEM1. The subsystems have different definitions of ITEM1.

In this case, you can specify containerContextDependent=yes for RECORDZ so that

EGL validation will not attempt to resolve ITEM1 until RECORDZ is used in a

program. The EGL build path of the project containing the program and the import

statements of the file containing the program determine where to find the

definition for ITEM1.

The migration tool does not attempt to set the containerContextDependent

property for you. This is because the migration tool does not require that you

migrate all your subsystems at the same time and does not do a complete analysis

of all definitions of all parts to determine when there are duplicate part definitions.

You can add the containerContextDependent property as necessary if you

Chapter 2. Migration Tool Philosophy 37

determine that there are duplicate part names that need to be resolved at test and

generation time (as in VisualAge Generator) rather than at definition time (as in

EGL).

EGL reserved word list

EGL has a reserved word list. Parts cannot be named the same as any EGL

reserved word. In addition, EGL does not permit the use of the # or @ symbol as

the first character of an EGL part name. If a VAGen part is named the same as an

EGL reserved word, or if a VAGen part starts with the # or @ symbol, the

migration tool does the following based on the part type:

v The migration tool does not rename programs, map groups, or tables because

these parts frequently have references from non-VAGen programs or the runtime

environment (for example, a CICS PROGRAM definition).

v The migration tool renames data items, records, maps, and functions by

prefixing the part name with a Renaming prefix. The Renaming prefix is one of

the VAGen Migration Preferences that you can specify for Stage 2 or single file

mode migration.

Note: For the purposes of renaming, the migration tools treat a UI record the

same as other records. In addition, if a UI record must be renamed, the

Stage 3 migration tool changes the name of the .egl file that contains the

UI record so that the file name matches the new name for the record.

v The migration tool does not rename control parts, except for the following:

– The migration tool removes the .BND suffix from the end of a bind control

part name.

– The migration tool removes the .LKG suffix from the end of a link edit part

name.

– The migration tool changes any other dots to underscores in control part

names. The tool also changes dots to underscores in control part names that

are referenced in the /OPTIONS, /RESOURCE, and /LINKEDIT generation

options.

The Stage 1 migration tools provide a list of the program, map group, table, and

control part names that conflict with the EGL reserved word list. If you do not

rename these parts before you migrate, the Stage 2 migration tool (or single file

mode) will also issue an error message. There will be an error in the Problems

view. You can correct the problem in EGL by renaming the program, formGroup,

or dataTable and optionally using the EGL alias property.

Note: The Stage 2 migration tool issues a warning message for any UI record that

is renamed by the tool. Because the Stage 3 migration tool also renames the

.egl file, there is no error in the Problems view for UI records.

Placing parts in EGL files

When you migrate using Stage 1 – 3 migration, each Java package or Smalltalk

application migrates to the corresponding EGL package based on your Stage 1

renaming rules. The VAGen parts within the original Java package or Smalltalk

application are placed in one or more EGL files within the corresponding EGL

package based on the following:

v The type of part:

– Generatable part -- program, table, map group, or UI record

– Control part -- generation options, resource associations, linkage table,

linkedit, or bind control

38 Rational Software Development Platform: VisualAge Generator to EGL Migration Guide

– Other migratable parts -- data item, map, function, PSB, and records other

than UI records.
v A Stage 1 preference that enables you to identify Java project or package names

that contain common parts. Similarly, there is a Stage 1 preference for Smalltalk

that enables you to identify configuration map or application names that contain

common parts.

v Whether the part is used by some other part. The Stage 1 migration tool

determines whether a part is used based on the following:

– A part is ″used″ if it appears on the VAGen associates list of any generatable

part in the migration set.

– A part is ″used″ if it is in a common Java project or package or in a common

Smalltalk configuration map or application as specified in your Stage 1

preferences.

The Stage 1 migration tool determines the placement of all parts. The Stage 1

migration tool places VAGen parts within a single Java package or Smalltalk

application into EGL files within the corresponding EGL package as follows:

v All control parts are placed in a single file called eglPackageName.eglbld, where

eglPackageName is the name of the corresponding EGL package.

v Each program part is placed in a file called programName.egl, where

programName is the name of the program.

v Each table part is placed in a file called tableName.egl, where tableName is the

name of the table.

v Each map group and all maps in the map group are placed in a file called

mapGroupName.egl, where mapGroupName is the name of the map group. If

there is no map group part, the Stage 1 migration tool creates a dummy map

group part. Because the map group and all maps in the map group must be

placed in the same file, these parts must be considered as a group. This can

result in some parts being moved to a different EGL package or project if the

parts were not originally in the same Java package or Smalltalk application. The

migration tool determines where to place the mapGroupName.egl file as follows:

– If the map group and all its maps are in the same Java package, the

mapGroupName.egl file is placed in the corresponding EGL package.

Similarly, if the map group and all its maps are in the same Smalltalk

application, the mapGroupName.egl file is placed in the EGL package that

corresponds to the Smalltalk application. In this situation, the migration tool

handles the mapGroupName.egl file in the same manner as the program and

table files. This is the most common situation.

– If the map group and its maps are spread across several Java packages

within a project, then the project name, plus a suffix is used to create the

name of a new EGL package to contain the mapGroupName.egl file. This new

EGL package is placed within the original project. Similarly, if the map group

and its maps are spread across several Smalltalk applications within a

configuration map, the configuration map name, plus a suffix is used to

create the name of a new EGL package to contain the mapGroupName.egl

file. For both Java and Smalltalk, you can control the suffix with a Stage 1

preference.

– If the map group and its maps are spread across several Java projects, then

the migration set name, plus a suffix is used to create the name of a new EGL

project that contains the mapGroupName.egl file. Similarly, if the map group

and its maps are spread across several Smalltalk configuration maps, the

migration set name, plus a suffix is used to create the name of a new EGL

Chapter 2. Migration Tool Philosophy 39

project that contains the mapGroupName.egl file. For both Java and Smalltalk,

you can control the suffix with a Stage 1 preference.
v Each UI record is placed in a file called uiRecordName.egl, where

uiRecordName is the name of the UI record.

v All the remaining parts are placed as follows:

– If the part is used by only one program in the migration set, the part is

placed as follows:

- If the part is in the same package as the program, then the part is placed in

the same file as the program. For example, the main function of a program

(ProgramA-MAIN) is placed in the same file as the program (ProgramA)

provided the function is not used in any other programs. The file is named

for the program – ProgramA.egl.

- If the part is in a different package from the program that uses it, the part

is placed as follows:

v If the part is in a common project or package, the part is placed in the

file called commonParts.egl in the part’s original package. You control

the name for commonParts with a Stage 1 preference.

v If the part is not in a common project or package, the part is also placed

in the file called commonParts.egl in the part’s original package.
– If the part is used by several programs in the migration set, then the part is

placed in the file called commonParts.egl within its original package. For

example, if ProgramA calls ProgramB and passes RecordR, then RecordR is

placed in the file called commonParts.egl in the EGL package that

corresponds to the original Java package or Smalltalk application that

contains RecordR.

– If the part is not used by any programs in the migration set, the part is

placed into a file as follows:

- If the part is in a common Java project or package, then the part is placed

in the file called commonParts.egl within the EGL package that corresponds

to the original Java package that contains the part. Similarly, if the part is in

common Smalltalk configuration map or application, then the part is placed

the file called commonParts.egl within the EGL package that corresponds to

the original Smalltalk application that contains the part.

- If the part is not in a common Java project or package, then the part is

placed in the file called unusedParts.egl within the EGL package that

corresponds to the original Java package that contains the part. Similarly, if

the part is not in a common Smalltalk configuration map or application,

then the part is placed in the file called unusedParts.egl within the EGL

package that corresponds to the original Smalltalk application that contains

the part. You control the name for unusedParts with a Stage 1 preference.
v There are the following special considerations:

– Any function used as an edit routine on a map or UI record contributes to

whether the function is used or not used. However, the migration tool always

places the function with either the program or in the commonParts file. The

migration tool never places the edit function in a file that is created for the

map group or in the file that is created for the UI record.

– Any shared item that is used in a table or UI record contributes to whether

the data item is used or not used. However, the migration tool always places

the data item with either the program or in the commonParts file. The

migration tool never places the data item in a file that is created for the table

or in the file that is created for the UI record.

40 Rational Software Development Platform: VisualAge Generator to EGL Migration Guide

Note: If you migrate multiple migration sets or migration set versions without

clearing out the migration database, the first migration set version

processed in Stage 1 that contains a part edition controls the project,

package and file name for the EGL part. To ensure that parts are placed

according to the definition of each migration set version, you should clear

out the migration database between versions. Alternatively, migrate the most

recent version of the migration set through Stage 1 so that any part edition

that has not changed since earlier migration set versions is placed into an

EGL file based on its current usage. For example:

v A part that was previously used by only one program might now be used

by several programs. Migrating the most recent version of the migration

set first causes the part to be placed into a common parts EGL file rather

than with the program that was the original (and sole) user of the part.

v A part that was previously not used by any programs might now be used

by one or more programs. Migrating the most recent version of the

migration set first causes the part to be placed based on its current usage,

rather than in the unusedParts.egl file.

The Stage 1 migration tools for Java and Smalltalk are provided as sample code.

You can modify the Stage 1 migration tools to place parts differently based on your

own library management philosophy. For example:

v If ProgramX calls ProgramY and passes records ProgramY-Parm and

Common-Parm, you might want ProgramY-Parm to be placed in the file with

ProgramY and Common-Parm to be placed in the commonParts file. Given

knowledge of your naming conventions, you can modify the Stage 1 migration

tool to change the file placement algorithm.

v For large packages, you might want to split the parts into separate files by part

type or by the first few characters of the part name.

v If the same part edition appears in multiple migration set versions, but should

be placed in different EGL projects, packages, or files depending on the

migration set version, you might want to update the migration database for the

new EGL project, package, and file name for each part whenever you process a

migration set version. If you make this change, be sure to process each migration

set version completely through Stages 1 – 3 before starting to migrate the next

migration set version.

v If you used a strategy of placing one program per Java package and one

package per project, you might want to combine packages or projects to reduce

the number of EGL projects and packages you need to manage in your source

code repository. Similarly, if you used a strategy of placing one program per

Smalltalk application and one application per configuration map, you might

want to combine applications or configuration maps when creating your EGL

projects and packages.

Migrating with a program

Normally when you migrate, you specify a migration set that identifies all the Java

projects or Smalltalk configuration maps that should be migrated as a group. Using

the migration set, the migration tool migrates programs and their associates first.

This enables the tool to use the context of a specific program to assist in resolving

situations where the EGL language is more precise or more restrictive than

VisualAge Generator. The first program to migrate, together with its associates,

determines the EGL syntax for any ambiguous situation within that program or its

associates. A different program might result in a different resolution for the same

ambiguous situation in a shared data item, common record, map, table or function.

Chapter 2. Migration Tool Philosophy 41

Because a part version is only migrated once, the first program that uses the

common part controls the resolution of any ambiguous situation for its associates.

Consider the example in which ProgramA is a main transaction program using

display maps and ProgramB is a main batch program using printer maps. The

programs share common functions that display the HEADER and DETAIL maps.

The common functions also use the SET map PAGE statement to clear the screen

or force a page eject. In this case, if ProgramA migrates first, the migration tool

creates the EGL source for the functions to use the display statement and

clearScreen system library function. If ProgramB migrates first, the migration tool

creates the EGL source to use the print statement and the pageEject system library

function.

Whenever you migrate programs and their associates, the first program that uses a

shared data item, common record, map, table, or function controls the resulting

EGL code. In most cases, because the programs use the common code in the same

way, this technique provides the most appropriate migration of your VAGen

source. However, as you can see from this example, the specifics of what you

intended the common code to accomplish might not be reflected in the resulting

EGL source. In this example, regardless of which program migrates first, you will

not be able to test or generate the program that migrates second. In VisualAge

Generator Compatibility mode, you can use the display statement to resolve the

problem with the I/O statement. However, to resolve the problem with the choice

of clearScreen or pageEject might require adding a new variable, TEXT-OR-PRINT,

that each program initializes and which the common function tests to determine

whether to execute the clearScreen or pageEject system library function.

Migrating with associated parts

If a program and its associates are not available, the migration tool makes use of

all the parts that are available in the migration set (or in the External Source

Format file if you are migrating in single file mode). In this case, if the additional

part that is needed for cross-part migration is available, the migration tool can

make a decision with a high probability that it is the correct choice.

Consider the example in which a map variable field specifies an edit routine. If a

VAGen table that is named the same as the edit routine is available in the same

migration set (or the External Source Format file), then the migration tool assumes

that this is the table that would always be used and migrates to the

validatorDataTable property. If there is a function that is named the same as the

edit routine, then the migration tool migrates to the validatorFunction property. In

either case, because there is a part with the same name as the edit routine, the

migration tool has a high probability that it made the correct choice. If a table or

function with the same name as the edit routine is not available, then the

migration tool processes the map variable field as though it was migrating without

associated parts.

In many cases, migration with associated parts can provide very similar migration

to what you would achieve when you migrate programs with their associates. The

disadvantage of migrating without the program is that you can quickly shift from

migrating with associated parts to migrating without associated parts even within

a single function based on the specific statement that is being migrated and the

other parts that are included in the migration set.

42 Rational Software Development Platform: VisualAge Generator to EGL Migration Guide

Migrating without associated parts

Sometimes even when a program is available, not all of its associates are included

in the migration set. Or you might be migrating some common parts that were

used in the past by a subsystem, but which are not currently in use. In this case,

the associates of a part that is being migrated might not be available. The

migration tool still converts the part using one of the following techniques:

v Flexibility in EGL syntax. For example, a DISPLAY I/O option is migrated

without an associated map. In this case the migration tool makes the choice of

using a display statement and includes a warning message in the migration log.

Even if the migration tool guessed incorrectly, because you use VisualAge

Generator Compatibility mode, the display statement will be accepted even if

the form is a print form.

v Intelligent guess. For example, a map variable field specifies an edit routine, but

there is no part named the same as the edit routine in the migration set. In this

case, the migration tool makes use of other information. The tool looks at the

following to try to determine whether to use the validatorDataTable or

validatorFunction property:

– Length of the edit routine name, because 8 or more characters indicate it is a

function.

– Edit routine name is EZEC10 or EZEC11, which indicate it is a function.

– Edit message is also specified, because the message can only be used with an

edit table or EZEC10 or EZEC11.

Any of these enable the migration tool to make an intelligent choice between

setting the validatorDataTable or validatorFunction property. If there is nothing

to make a definitive choice, the migration tool uses the validatorFunction

property and includes an error message in the migration log. If the migration

tool guessed incorrectly there should also be an error in the Problems view.

v Deliberately invalid syntax. For example, a SET map PAGE is migrated without

an associated map. In this case, the migration tool could make the choice

between using an EGL converseLib.clearScreen function for a text form and an

EGL converseLib.pageEject function for a print form. However, both choices are

equally probable. Therefore, the migration tool creates intentionally invalid

syntax and converts to converseLib.EZE_SETPAGE. This results in an error in

the Problems view and forces you to correct the problem.

v Direct conversion without information due to missing associates. (The missing

associates can result in problems undetectable by the migration tools.) For

example, RecordA specifies that it is redefining the storage of RecordB. In

VisualAge Generator, the redefinition information is stored in the record

definition for RecordA. When you generate, RecordA and RecordB must be

available and the redefinition is done for the RecordA in the program. In EGL

the redefinition information is only stored in the program. If RecordA is not

available when migrating the program, the migration tool has no way to detect

that RecordA needs to include the redefines property within the program.

Without the redefines property, EGL test and generation treat RecordA and

RecordB as separate data areas. The program will not run the same as in

VisualAge Generator -- data might not be initialized correctly and abends could

occur. This is why we strongly encourage you to generate and test your

migrated programs.

Controlling the order for processing migration sets

The Stage 1 migration tool processes migration sets in the following order:

v If you specify a .pln file or a directory containing .pln files, the Stage 1 migration

tool processes the migration sets within a single .pln file in the order in which

Chapter 2. Migration Tool Philosophy 43

they are listed within the file. If there are multiple .pln files in a directory, the

Stage 1 migration tool processes the files in alphabetical order.

v If you do not specify a .pln file or a directory containing .pln files, the Stage 1

migration tool processes the Java high-level PLP projects that match the

specifications in alphabetical order. If multiple versions of the same Java

high-level PLP project are requested, the Stage 1 migration tool processes the

versions in order based on the date/time stamp. Similarly, the Stage 1 migration

tool processes the Smalltalk high-level configuration maps that match the

specifications in alphabetical order. If multiple versions of the same Smalltalk

high-level configuration map are requested, the Stage 1 migration tool processes

the versions in order based on the date/time stamp.

v If you need more control over the order in which migration sets are added to

the migration database, run the Stage 1 tool multiple times.

The Stage 2 and 3 migration tools process migration sets in the following order:

v The Stage 2 and 3 migration tools process the migration sets in the same order

they are listed in the .vgmig file. By default, if all the migration set names are

unique, this is the same order in which the migration sets are listed in the

VAGen Migration wizard and is the same order in which the migration sets

were added to the migration database in Stage 1.

v If you need to change the order, deselect Migrate now and save the .vgmig file.

Double-click on the .vgmig file to change the order and then save the file.

Right-click on the .vgmig file and then select Start Migration from the context

menu. Alternatively, run Stage 2 and 3 multiple times, specifying just one

migration set each time, in the order in which you want the migration to occur.

Note: You should not process multiple versions of a migration set using online

mode.

Overwriting and merging files

The Stage 2 and 3 migration wizards provide several related preferences that

control processing for multiple versions of the same migration set. These

preferences are as follows:

v Migrate remaining VAGen parts.

v Import into workspace -- with or without Override existing files.

v Save migrated files to temporary directory.

Migrate remaining VAGen parts controls whether the migration tool converts all

parts in the migration set to EGL.

v For the purposes of the Migrate remaining VAGen parts preference, UI records are

treated like other records. This preference does not consider UI records to be

generatable parts.

v If you do not select Migrate remaining VAGen parts, only generatable parts and

their associates are converted into EGL and stored in the migration database.

Data items, records, and functions are not converted unless they are an associate

of one or more generatable parts. Control parts are not converted. Deselecting

Migrate remaining VAGen parts can be useful if you are migrating a subsystem

project and a common project in a single migration set. In this situation, the

following happens:

– For the subsystem project, only parts that are actually used within the

subsystem are converted.

– For the common project, any generatable parts and their associates are

converted. In addition, any data items, records, and functions that are used

44 Rational Software Development Platform: VisualAge Generator to EGL Migration Guide

by the subsystem are also converted. Other data items, records, and functions

that might be used by other subsystems but which are not used by the

current subsystem are not converted to EGL.

There are two advantages of deselecting Migrate remaining VAGen parts:

– For the subsystem project, you have the opportunity to clean up your code

because the migration tool only converts parts that are actually used.

– For the common project, you can defer converting parts until they are actually

used by another subsystem. When you include the common project in the

migration set for another subsystem, any additional parts used by this

subsystem are converted to EGL and stored in the migration database. This is

particularly useful if your common project has associates in various

subsystems or contains parts that are associates of generatable parts in

various subsystems. Deferring the migration of the common parts until a

subsystem uses the part enables the common parts to migrate ″with

associates.″ When you migrate the next migration set that contains the

common project, your selection for Override existing files controls what

happens to the originally migrated common parts files.
v If you select Migrate remaining VAGen parts, the generatable parts and their

associates are converted to EGL and stored in the migration database. Then any

data items, records, and functions that are not associates of generatable parts are

converted to EGL. All control parts are also converted to EGL. There are two

advantages of selecting Migrate remaining VAGen parts:

– For the subsystem project, all the parts are converted to EGL regardless of

whether they are used or not. This is useful if you must preserve code for

historical purposes.

– For the common project, selecting Migrate remaining VAGen parts is

particularly useful if you know that the parts in the common project do not

have associates in the subsystem projects that you plan to migrate in the

future. You can convert all the common parts one time and have the EGL

stored in the migration database. Then if the common project is included in

the migration set for other subsystems, the EGL is already converted and

available to be imported into the workspace or saved into the temporary

directory with the new subsystem.

If you select Migrate remaining VAGen parts for your first migration set version,

you should continue to select Migrate remaining VAGen parts for other migration

set versions. You should also specify Override existing files. By specifying both

options you ensure that all the parts in the migration set are included in the

EGL file.

Import into workspace controls whether the migration tool builds the EGL

projects, packages, and files in your workspace. If you select Import into workspace,

there are additional options that you can select.

v If you are migrating multiple versions of a migration set, you can choose which

version to have imported into your workspace at the end of migration. You can

choose either the Latest version (most recent version) or the Oldest version. The

advantage of selecting the latest version is that this is the version which you are

most likely to want to generate for additional testing. The advantage of selecting

the oldest version is that this positions you to store the EGL projects, packages,

and files that correspond to the oldest version into your source code repository

first.

v You can specify how you want to handle the situation in which an EGL file that

is being created by the current migration already exists in your workspace.

Chapter 2. Migration Tool Philosophy 45

– If you select Override existing files, the EGL file is replaced by a new file

containing only parts in the current migration set. The migration tool does

not convert VAGen part editions again if they were already converted for a

previous migration set. However, the migration tool does include the EGL for

the part editions in the file if the parts are included in the current migration

set. Select Override existing files if you decide to change your VAGen Migration

Preferences or Database I/O Preferences or to modify your Rename User Exit

Preferences. In this situation, you could restore your database to the end of

Stage 1 and then run Stage 2 and 3 again with your new preferences.

Specifying Override existing files enables you to run Stage 2 and 3 without

having to clean out the EGL workspace first. Selecting Override existing files is

also useful if you specify Migrate remaining VAGen parts. In this situation, if

you migrate another version of a migration set, the EGL files are replaced by

new files containing the part editions that are included in the current

migration set version.

– If you do not select Override existing files, the existing EGL file is modified to

contain any additional parts that are in the current migration set. Parts that

are already in the EGL file are not changed, even if the current migration

set uses a different part edition. Deselecting Override existing files is useful

only if you do not specify Migrate remaining VAGen parts and you are

migrating just one version of a common project, but with several different

subsystems. In this situation, you can gradually build up the EGL files for a

common project in stages as you migrate different subsystems. Only the

common parts used by the first subsystem are initially included in the EGL

file. When you migrate the second subsystem, the migration tool adds any

additional parts required for the second subsystem into the EGL file. The

migration tool does a merge of the original file and the additional parts so

that the parts continue to be organized alphabetically within part type.

You can select Import into workspace when you are migrating multiple versions of a

migration set. However, the better technique is to deselect Import into workspace and

instead select Save migrated files to temporary directory. Using the temporary

directory enables the migration tool to create all the migration set versions.

Save migrated files to temporary directory enables you to migrate multiple

versions of a migration set and store all the versions outside the workspace. This

option requires the use of multiple simultaneous instances of the EGL development

environment. Therefore, due to the large amount of memory resource required, it is

recommended only for batch mode. When you select Save migrated files to temporary

directory, you must also specify a high level directory. The migration tool creates a

subdirectory for each migration set version within this high level directory. Save

migrated files to temporary directory works particularly well if you also specify

Migrate remaining VAGen parts. In this situation, each subdirectory corresponding to

a migration set version contains all the parts from the VAGen project versions that

are included in the migration set version.

General rules

There are some general rules that govern what the migration tool does when

migrating your source code. The rules are as follows:

v Any new variables that are added to support the EZE words or other statements

must be added to the program. They cannot safely be added as local storage in a

function. This is because a segmented converse is not supported if any function

currently in the stack has local storage, parameters, or a return value. Because

the function context is not known, there is no way to determine whether the

function would be in a function stack that leads to a segmented converse.

46 Rational Software Development Platform: VisualAge Generator to EGL Migration Guide

Therefore any new variables are added to the program, not as function local

storage. See “Intermediate variables required for migration” on page 87 for

details.

v You might have parts from Cross System Product or older releases of VisualAge

Generator that were migrated to VisualAge Generator 4.5, but never modified

within VisualAge Generator 4.5. In some cases, information is missing from the

External Source Format or is specified in a way that is not supported in EGL.

The migration tool attempts to supply the missing information or correct the

information. This includes the following:

– For main transactions, if the VAGen segmentation information is missing, the

migration tool defaults the EGL segmented property to no.

– For SQL records, if the SQL data code is missing, the migration tool converts

the item to a fixed length item.

– For SQL functions, the migration tool attempts to create any missing required

SQL clauses based on the record specified as the I/O object.
v Within a function, the migration tool converts all statements to something. This

preserves your IF / ELSE / END and WHILE / END logic. However, the

resulting statements might not be syntactically correct. For example:

– If an EZESYS value is not supported in EGL, the migration tool uses the

VAGen value. There will be a message in the Problems view if the value is

not supported.

– The EZESCRPT special function word is commented out. There is no

corresponding EGL replacement. Because EZESCRPT could not be used in an

IF, WHILE, or TEST statement the structure of your function’s logic is

preserved. The migration tool issues an error message. There will not be an

error in the Problems view.
v When trying to resolve a part reference without a program, the migration tool

looks at the parts in the migration set. Therefore it is important that you define

your migration sets to include groups of projects that are reasonable to use

together. For example:

– Do not include projects from several subsystems that have conflicting part

names.

– Do include common Java project or common Smalltalk applications when

migrating a subsystem.
v There are some things the migration tool does not do during migration:

– The migration tool does not add import statements for the following

situations because these are not associates in VisualAge Generator:

- For a function that transfers to a program using a CALL, DXFR, or XFER

statement. If you are generating for Java, you must add the import

statement for the package containing the program within the file containing

the function or fully qualify the program name with the package name.

Alternatively, you can use an entry in a linkage options part to specify the

name of the package where the program is located.

- For build parts in .eglbld files. VAGen control parts, such as the generation

options parts, do not list their associated parts, so the information is not

readily available to the migration tool. In addition, due to the way EGL

processes build descriptor parts, you will likely need to do some reordering

of the nextBuildDescriptor values (VAGen /OPTIONS). This reordering will

in turn require modification of any imports the migration tool might have

done.

Chapter 2. Migration Tool Philosophy 47

Note: The Stage 1 migration tool analyzes the parts in the migration set to

determine the associates for each part. To ensure that only parts for the

migration set are included in the analysis, the Stage 1 migration tool

deletes any Java projects from the workspace before loading the

migration set specified by a high-level PLP project. Similarly, the Stage

1 migration tool deletes any Smalltalk configuration maps before

loading the migration set specified by a high-level configuration map.

Because the analysis of associates is limited to the migration set, the

migration tool does not set the EGL build path property to specify EGL

projects that are not included in the migration set. In addition, the

migration tool does not include import statements for EGL packages

that are not included in the migration set.

– EGL does not permit implicit items. VisualAge Generator permits implicit

items, but does not recommend them. Implicit items are items that are used

in a program, but which are not explicitly defined in a record, table, or map

used by the program. The migration tool does not create definitions for

implicit items due to the performance impact of evaluating every unqualified

data item to determine whether it is an implicit item. You should provide

definitions for implicit items before you migrate. To resolve the problem

before you migrate, validate the program in VisualAge Generator to

determine whether the program actually uses implicit items. If implicit items

are used, VAGen validation provides a message with the correct definition of

the item. If you do not create a definition for the implicit item before you

migrate, there will be an error in the Problems view and you can correct the

problem in EGL.

– The migration tool does not attempt to set the containerContextDependent

property. This is something you can add later to specific common records or

functions that have the need to reference other parts that are provided by a

subsystem. See the section “containerContextDependent Property” on page 36

for more details of how to use this property for records and functions.

– The migration tool assumes that the VAGen syntax is valid and that a

program using the parts included in your migration set can be successfully

validated in VisualAge Generator. The migration tool does not attempt to

repair invalid syntax. For example:

- If the elements of a map array have different edit characteristics or

attributes, the characteristics for the first element of the array determine

what is migrated to EGL. The migration tool does not issue a message.

- If the lengths of shared data items in a record have changed so that the

length of a parent item does not match the sum of the lengths of items in

its substructure, the migration tool does not change any item lengths and

does not issue a message. There will be an error in the Problems view

indicating that sum of the lengths of the children does not match the length

of the parent.
– The migration tool does not attempt to improve inefficient code even if it

results in syntax errors in EGL. For example:

- If the same record is listed twice in a program’s Tables and Additional

Records list, the migration tool does not remove it and does not issue a

message. There will be an error in the Problems view. Similarly, if the same

table is listed twice in a program’s Tables and Additional Records list, the

migration tool does not remove the extra table and does not issue a

message. There will be an error in the Problems view.

- If a record is not used in a program, but is listed in a program’s Tables and

Additional Records list, the migration tool does not remove it and does not

issue a message. There will not be an error in the Problems view. Similarly,

48 Rational Software Development Platform: VisualAge Generator to EGL Migration Guide

if a table is not used in a program, but is listed in the program’s Tables and

Additional Records list, the migration tool does not remove the table and

does not issue a message. There will not be an error in the Problems view.

- If a working storage record is listed in the program’s Tables and Additional

Records list and the record only contains level 77 items, the migration tool

does not remove the record and does not issue a message. There will be an

error in the Problems view indicating the record cannot be found. This is

because the only record that now exists includes your Level77 suffix

preference as part of the record name.

- If a VAGen program includes a map group or a help map group, an actual

map group part did not have to exist. For example, if the program never

DISPLAYs or CONVERSEs a map or if the program never uses a map as a

called parameter, an actual map group part did not have to exist. In this

situation, the migration tool includes the use statement for the formGroup,

but does not include the import statement in the program because the map

group was not an associate of the program in VisualAge Generator. The

migration tool does not issue an error message. EGL requires an actual

formGroup part. If there is no formGroup part or if the formGroup part is

not in the same package as the program, there will be an error in the

Problems view indicating that the formGroup specified in the program’s

use declarations cannot be found.
– The migration tool does not necessarily detect or provide warning messages

for the use of facilities that were not documented in VisualAge Generator,

even if there is no equivalent EGL support. For example:

- The VAGen EZEBYTES function is only documented to support items and

records. There was undocumented support for maps. The EGL sysLib.bytes

function only supports items and records. The migration tool does not

provide a warning message if you used EZEBYTES for a map. There will

be an error in the Problems view.

- If a CALL statement specifies an unqualified item as an argument, and

there are multiple definitions for this item name within the program,

VAGen gives precedence to the level 77 item in the program’s primary

working storage record. EGL requires that the item be qualified. The

migration tool does not add the qualification for you and does not provide

a warning message. There will be an error in the Problems view.

Determining how to organize your EGL source code

Before you attempt to organize your source code for EGL, you need to understand

the following:

v The differences between the VisualAge Generator and EGL products in terms of

the following:

– The facilities the products provide for organizing code.

– The way the products determine which parts to consider during

development, test, and generation.

– How the products track the changes you make to a part.
v The capabilities provided by the migration tool to help you achieve the final

organization you want in EGL.

v The limitations and tradeoffs of various source code organization techniques in

EGL.

Chapter 2. Migration Tool Philosophy 49

Differences in product capabilities for organizing your code

VisualAge Generator and EGL provide different methods for organizing your

source code. VAGen on Java uses projects and packages. VAGen on Smalltalk uses

configuration maps and applications. EGL uses projects, packages, and files.

VAGen on Java code organization

In VAGen on Java, the source code is organized into Java projects and packages.

For example, you might have ProjectA that includes all the packages that contain

code unique to SubsystemA, ProjectB that includes all the packages that contain

code unique to SubsystemB, and ProjectCommon that includes all the packages

that are shared by multiple subsystems.

The Java projects that you add into your workspace determine the source code that

is considered when you develop, test, or generate your VAGen programs. You can

use a project that contains a Project List Part (PLP) to point to other projects that

must be added to your workspace at the same time. For example, in addition to

specifying all the packages that contain code unique to SubsystemA, ProjectA can

include a PLP part that specifies that ProjectCommon is a VAGen required project.

Specifying the VAGen required project ensures that whenever you load ProjectA

into your workspace, the correct version of ProjectCommon and all the package

versions it contains is also loaded so that you have all the parts needed to develop,

test, and generate. You can add projects that contain duplicate part names into

your workspace, but you cannot test or generate if there are duplicate parts in

your workspace.

When you make a change to a part, VisualAge Generator creates a new edition of

the part in your workspace and in the ENVY repository. VisualAge Generator uses

a technique called versioning to freeze the code at a known level. The ENVY

repository stores all the versions of a Java project or package, but you can only

have one version in your workspace at a given time. Tools provide a way of

comparing the version in your workspace with previous versions in the ENVY

repository to see what has changed at the project, package, or part level. To keep

track of changes, you can use different versions of the same Java project for

development, each level of test, or production. An alternative technique for

tracking changes is to have one project for development, one for each level of test,

and one for production.

VAGen on Smalltalk code organization

In VAGen on Smalltalk, the source code is organized into Smalltalk configuration

maps and applications. For example, you might have ConfigurationMapA that

includes all the applications that contain code unique to SubsystemA,

ConfigurationMapB that includes all the applications that contain code unique to

SubsystemB, and ConfigurationMapCommon that includes all the applications that

are shared by multiple subsystems.

The Smalltalk configuration maps that you load into your image determine the

source code that is considered when you develop, test, or generate your VAGen

programs. Configuration maps provide an easy way of specifying which Smalltalk

applications to load into your image. For example, in addition to specifying all the

Smalltalk applications that contain code unique to SubsystemA,

ConfigurationMapA can specify that ConfigurationMapCommon is a required

configuration map. Specifying the required configuration map ensures that

whenever you load ConfigurationMapA into your image, the correct version of

ConfigurationMapCommon and all the application versions it contains is also

50 Rational Software Development Platform: VisualAge Generator to EGL Migration Guide

loaded so that you have all the parts needed to develop, test, and generate. You

cannot load two applications or configuration maps into your image if they contain

duplicate part names.

When you make a change to a part, VisualAge Generator creates a new edition of

the part in your image and in the ENVY manager. VisualAge Generator uses a

technique called versioning to freeze the code at a known level. The ENVY

manager stores all the versions of a Smalltalk configuration map or application, but

you can only have one version loaded into your image at a given time. Tools

provide a way of comparing the version in your image with previous versions in

the ENVY manager to see what has changed at the configuration map, application,

or part level. To keep track of changes, you can use different versions of the same

Smalltalk configuration map for development, each level of test, or production. An

alternative technique for tracking changes is to have one Smalltalk configuration

map for development, one for each level of test, and one for production.

EGL code organization

In EGL, the source code is organized into projects, packages, and files. For

example, you might have ProjectA that includes all the packages that contain code

unique to SubsystemA, ProjectB that includes all the packages that contain code

unique to SubsystemB, and ProjectCommon that includes all the packages that are

shared by multiple subsystems. This is similar to VAGen on Java, but differs in

two important ways:

v EGL does not have a concept similar to the PLPs in VAGen on Java. Instead, you

must determine which projects to load into your workspace so that all the parts

necessary to develop, debug, and generate are available.

v The EGL files provide a more detailed organization of your source code. For

example within ProjectA, you might have one package for data that is shared by

the programs in SubsystemA. This package might include all the data item parts

for SubsystemA and the records that are used by multiple programs in

SubsystemA. You might organize this package into files in several ways,

including any of the following:

– One file that contains all the data items and records.

– One file that contains all the data items and another file that contains all the

records.

– One file that contains the data items that start with the letters A through M,

another file that contains the data items that start with the letters N through

Z, and one file that contains all the records.

EGL requires that program, DataTable, and FormGroup parts must each be in a

unique file, but the file can also contain other parts. For example, you might have

a file for ProgramX that contains the ProgramX part as well as functions and

records that are unique to ProgramX.

When you create an EGL project, you use the EGL Build Path to specify any other

projects to consider when you develop, test, or generate your EGL programs,

DataTables, or FormGroups. The EGL Build Path for a project limits which other

projects are considered when searching for a part name. EGL also uses import

statements within each file to determine which packages to include from within

the projects listed in the EGL Build Path when searching for a part name. You can

have duplicate part names in your workspace, but the part names within the EGL

Build Path and the set of import statements must be unique.

When you make a change to a part and save the file, EGL stores the file into the

file system and replaces the previous file. You use a source code repository to

Chapter 2. Migration Tool Philosophy 51

retain multiple versions of the code. The source code repository provides tools

such as checkout and checkin, version control, and comparison tools so that you

can compare what is in your workspace with other versions of the code in the

source code repository. The source code repository also enables developers to share

their changes. There are a number of source code repositories that you can use

with EGL. Some examples are CVS and IBM Rational ClearCase. Regardless of the

source code repository you select, you can only have one version of a project,

package, or file loaded into your workspace at a given time.

Organization capabilities provided by the migration tool

The Stage 1 migration tool determines the placement of each part in the EGL

project, package, and file organization. By default, the Stage 1 migration tool for

Java preserves your VAGen on Java project and package structure by converting

each VAGen on Java project to an EGL project and converting each VAGen on Java

package to an EGL package. Similarly, the Stage 1 migration tool for Smalltalk

preserves your VAGen on Smalltalk configuration map and application structure

by converting each VAGen on Smalltalk configuration map to an EGL project and

converting each VAGen on Smalltalk application to an EGL package. The only

exception to this default preservation policy occurs if maps and their

corresponding map group are in multiple Java projects or packages or multiple

Smalltalk configuration maps or applications. In the exception case, the migration

tool merges the maps and their map group into a new EGL package or project,

depending on the original placement of the maps and map group. See “Placing

parts in EGL files” on page 38 for details of the exception case and how the Stage

1 migration tool assigns VAGen parts to files.

There might be situations, such as those described in“Limitations and tradeoffs of

EGL source code organization techniques” on page 53, in which you want to

organize your EGL projects, packages, and files differently from the default used

by the Stage 1 migration tool. For this reason, the Stage 1 migration tool is shipped

as a sample program. You can modify the Stage 1 tool to better suit your

environment. The following white papers provide sample modifications to the

Stage 1 tool:

v File Location white papers:

– How to Modify the EGL File Location Algorithm used by Stage 1 of the VisualAge

Generator on Java to Enterprise Generation Language Migration Tool.

– How to Modify the EGL File Location Algorithm used by Stage 1 of the VisualAge

Generator on Smalltalk to Enterprise Generation Language Migration Tool.

v Project Consolidation white papers:

– How to Consolidate Projects and Packages during Stage 1 of the VisualAge

Generator on Java to Enterprise Generation Language Migration Tool.

– How to Consolidate Projects and Packages during Stage 1 of the VisualAge

Generator on Smalltalk to Enterprise Generation Language Migration Tool.

The two File Location white papers show examples of modifying the parts

placement algorithms for common and unused parts to split the commonParts.egl

and unusedParts.egl files into smaller files based on the part type and the first

character of the part name. The two Project Consolidation white papers show

examples of merging multiple Java projects or Smalltalk configuration maps into a

single EGL project and merging multiple Java packages or Smalltalk applications

into a single EGL package.

All four white papers are available in the ″Migrations″ section of the page at:

http://www.ibm.com/developerworks/rational/products/egl/egldoc.html

52 Rational Software Development Platform: VisualAge Generator to EGL Migration Guide

Limitations and tradeoffs of EGL source code organization

techniques

EGL works best when you organize your projects along functional lines. This

technique can help minimize the number of EGL projects you need in your

workspace, thereby improving performance. Your VAGen on Java projects and

packages or your VAGen on Smalltalk configuration maps and applications might

already be organized along functional lines. In this case, you might be able to use

the default Stage 1 migration tool. However, you need to consider other factors

that might cause you to alter the default EGL project and package strategy or the

default file placement algorithm used by the Stage 1 migration tool.

The main factor to consider is that the size of EGL projects, packages, and files

matters. The size can affect any of the following:

v Time required for opening or saving a file.

v EGL build time that is required to validate the parts. If you turn on the

workbench preference to Build Automatically, an EGL build occurs whenever

you save a file. If you do not turn on this preference, an EGL build occurs when

you request it. As a minimum, an EGL build must occur before you attempt to

debug or generate your code.

v EGL generation time that is required to generate the Java or COBOL source

code.

The following table shows the limitations and tradeoffs of project, package, and file

sizes.

 Table 9. Limitations and tradeoffs of project, package, and file sizes

Limitations

Advantage of

Smaller Advantage of Larger

Project v Maximum of 1500

projects.

v Some source code

repositories might

have a smaller

maximum.

v If you only need a

subset of the

projects, then the

workspace is

smaller so the EGL

build time might

be quicker.

v Smaller projects

load quicker from

the source code

repository.

v Minimizes the

chance that two

developers need to

make changes to

the same project at

the same time.

v Fewer projects in

the EGL Build

Path.

v Less likelihood of

cycles and fewer

cycles in the EGL

Build Path.

v Fewer projects to

scroll through.

v Fewer projects to

load from the

source code

repository.

Chapter 2. Migration Tool Philosophy 53

Table 9. Limitations and tradeoffs of project, package, and file sizes (continued)

Limitations

Advantage of

Smaller Advantage of Larger

Package v An import

statement of the

form:

import package.*

includes fewer part

names so the EGL

build time might

be quicker.

v Minimizes the

chance that two

developers need to

make changes to

the same package

at the same time.

v Fewer import

statements in each

file.

v Fewer packages to

scroll through.

File v Performance to

open or save a file

degrades for large

file sizes.

v No maximum size,

but practical size is

<200K.

v When you save a

file, there are fewer

parts to check for

changes so the

EGL build time

might be quicker.

v With good naming

conventions, you

can quickly find

the file containing

a specific part.

v Minimizes the

chance that two

developers need to

make changes to

the same file at the

same time.

v Fewer files to

scroll through.

Given the tradeoffs in Table 9, you should avoid creating giant EGL projects,

packages, or files. Conversely, you should avoid creating lots of tiny EGL projects,

packages, or files. Both extremes can adversely affect performance. For example, a

file that contains 30,000 data items is probably very large and might take several

minutes to open or save. Conversely, having 30,000 files, each with just one data

item, results in too many files to reasonably scroll through in the various

workbench views. A compromise approach is better. For example, one possible

compromise if the first character of the data item names is evenly split across the

alphabet, is to create multiple files, with each file containing all the data items that

start with the same character. This technique creates smaller files that are quicker

to open, but minimizes the total number of files.

Other factors that you should consider when structuring your EGL projects,

packages, and files are as follows:

v Consider your source code repository. Some considerations based on the source

code repository you select might include the following:

– Whether the source code repository supports checkout and checkin at the

project, package, or file level.

54 Rational Software Development Platform: VisualAge Generator to EGL Migration Guide

– Whether the source code repository supports version control at the project,

package, or file level.

– How the source code repository deals with the situation in which several

developers might need to make changes to the same project, package, or file

at the same time and how likely that situation is to occur given the

organization of your EGL projects, packages, and files.
v If you use a source code repository, it might have support for the concepts of

ownership or access control. If so, you need to consider the following:

– Your ownership strategy should reflect how development and maintenance

responsibilities are divided. Organizing your source code along functional

lines is useful if one person or group is responsible for developing and

maintaining a functional area.

– Whether there are restrictions that limit access to certain programs or parts.

For example, access to a program that writes payroll checks might be limited

to just one or two developers. In this case, you might need to put the

program in an EGL project by itself so that you can restrict access to that

project.

What is new for the VAGen migration tool since EGL 5.1.2?

The following functions are new or improved since EGL 5.1.2 General Availability.

Depending on your level of maintenance for the WebSphere Developer 5.1.2

product, you might already have some of the Stage 1 enhancements.

v Stage 1 has been changed as follows:

– Updated DDL for the migration database. You must rerun SetupTables.bat

and rerun Stage 1 to place your source code in the migration database.

– Externalized the EGL reserved word list and included the reserved word list

version in the log information.

– Added new checkStage1.bat file to check the results of Stage 1 for errors.
v Both Stage 2 and 3 and single file mode migration now include the following

changes:

– Support for the new EGL syntax.

– Optionally invoke a user exit to enable you to rename parts during Stage 2

migration or during single file migration. For example, you can write a user

exit to change a hyphen (-) to an underscore (_).

– New VAGen Syntax Migration Preferences to enable you to specify the

following for fields in SQL records:

- The migration tool should omit the SQL column name if it is the same as

the item name.

- The migration tool should always omit the isNullable = yes property.

- The migration tool should only include the isReadOnly = yes property if

there is only one SQL table specified for the SQL record and the VAGen

Read Only property is set to yes.
– New VAGen Syntax Migration Preference to enable you to specify that the

migration tool should change the decimal comma to a decimal point, even if

your workstation uses a locale that defaults to the decimal point.
v Stage 2 to 3 migration now also do the following:

– Add import statements for dataItem parts that specify a validatorFunction or

validatorDataTable property.

– Sort parts in a file by the EGL part name within the part type.

Chapter 2. Migration Tool Philosophy 55

The following EGL changes provide better support for migrated VAGen programs:

v Numeric variables can now be used in string concatenation. This provides

support for VAGen SQL I/O execution time statement build that is migrated to

the EGL prepare statement.

v The Java runtime environments now permit you to change the EGL product

messages similar to the capability provided in VisualAge Generator.

What is new for the VAGen migration tool since EGL 6.0 iFix?

The following functions are new or improved since EGL 6.0 iFix:

v Both Stage 2 and 3 and single file mode migration now include the following

changes:

– Better support for the user exit that enables you to rename parts during Stage

2 migration or during single file migration.

– New VAGen Migration Preferences to enable you to minimize the use of

VisualAge Generator Compatibility mode.

What is new for the VAGen migration tool since EGL 6.0.0.1?

The following functions are new or improved since EGL 6.0.0.1:

v Support for migrating Web transaction programs and UI records. Also support

for migrating generation options related to Web transactions.

v Support for migrating DL/I records, DL/I function I/O, PSB parts, EZEDL*

special functions words, and the CSPTDLI special function word. Also support

for migrating generation options, resource association options, and linkage table

options related to the IMSVS and IMSBMP environments, including GSAM and

message queue support.

Note: If you used a previous version of the migration tool to migrate parts that

use language elements related to Web transactions, IMS, or DL/I, see

Appendix I, “Required modifications if you migrated with a previous

version of the migration tool,” on page 425 for details of what you must

change by hand to match the EGL language.

What is new for the VAGen migration tool since EGL 6.0.1?

The following functions are new or improved since EGL 6.0.1:

v Stage 1 Smalltalk now supports subapplications. See “Mapping page” on page

139 for details on the new Collapse subapplication preference.

v Syntax migration improvements:

– For single file mode, parts are now sorted by part name within part type in

each file.

– Record declarations within programs are now sorted by record name.

– SQL comparison operations using the not sign are now converted to code

page independent operators.

– DL/I record declarations are not automatically added to a program based on

the program’s PSB. The only DL/I record declarations that are added to the

program are the ones necessary for the I/O options used by the program.

– Maps containing arrays now use the indexOrientation, columns,

linesBetweenRows, and spacesBetweenColumns properties to provide position

information for standard arrays. This enables you to use the EGL Form Editor

for the maps.

56 Rational Software Development Platform: VisualAge Generator to EGL Migration Guide

– The migration tool always sets the sign property when migrating data items,

fields on maps, and nonshared fields in UI records.
v Stage 2 and 3:

– The migration tool adds an import statement if a function references a table.

– Better merging logic if multiple migration sets are migrated at the same time

or when parts are renamed using the Renamer User Exit.

– Performance improvements. To take advantage of these improvements, do the

following:

- If you are running Stage 1, rerun the setupDatabase.bat and setupTables.bat

files. Then follow the instructions for Stage 2 under “Setting DB2

performance information” on page 155.

- If you previously created a migration database in Stage 1 and want to

make the performance improvements available for that database, do the

following:

v From a DB2 Command Window, navigate to the directory where

setupIndex.bat file is located.

– For Java, this is VisualAge-for-Java-install-directory\ide\vgmigration.

– For Smalltalk, this is VisualAge-Smalltalk-install-directory.
v If you changed the default migration database name (VGMIG) or the

default schema name (MIGSCHEMA), change the following files to use

your database name and schema name:

– createIndex.sql

– runStats.bat
v Run setupIndex.bat.

What is new for the VAGen migration tool since EGL 6.0.1.1?

The migration tool itself has not changed significantly for this interim release

(6.0.1.1 ifix3) of the Migration Guide. However, the Migration Guide has been

updated with new information as follows:

v Chapter 1 has been changed as follows:

– Updated and expanded the section on “Terminology used in this book” on

page 3 based on the availability of IBM Rational COBOL Generation

Extension for zSeries and IBM Rational COBOL Runtime for zSeries.

– Updated and expanded the section on “Planning your migration” on page 4.

– Added the section on “References” on page 15. This section also includes a

list of the available white papers related to migrating from VisualAge

Generator to EGL.
v Chapter 2 has added the following sections:

– “Determining how to organize your EGL source code” on page 49
v Chapter 9 has added the following sections:

– “Converting VAGen preparation templates and procedures to EGL build

scripts” on page 193

– “Converting VAGen runtime templates” on page 194

– “Converting the VAGen reserved words file” on page 195

– “Installing the EGL server product” on page 197

– “Planning for dual maintenance of your source code” on page 200
v Chapter 10 has added the following sections:

Chapter 2. Migration Tool Philosophy 57

– “Differences in SQL support” on page 210. This consolidates information on

SQL previously scattered throughout the chapter and expands the information

based on customer experience.

– Information about the migration of VAGen runtime environment variables

and runtime properties.
v Appendix B added the following sections:

– “Preparation templates and procedures” on page 348

– “Runtime templates” on page 350

– “Runtime environment variables” on page 352

– “vgj.properties” on page 354
v Appendix E has been changed as follows:

– Expanded the explanation for some messages and added new messages based

on customer experience and enhancements to the EGL validation messages.

– Added section “Reference information for messages - name resolution and

qualification rules” on page 404. This section provides information that is

useful in resolving messages that result from the differences between

VisualAge Generator and EGL for name resolution when there is a field with

the same name as another record, form, or dataTable.
v Appendix F has updated the list of APARs required for VisualAge Generator.

Known restrictions for the migration tools

General

Be sure to review the EGL restrictions, specifically any restrictions for validation,

debugging, or generation.

Stage 1 on Java and Smalltalk

v If you migrate multiple migration sets or migration set versions without clearing

out the migration database, the first migration set version that contains a part

edition controls the project, package and file name for the EGL part. This

generally does not cause a problem if the following are true:

– If your parts do not move between Java packages and you do not have

differently named migration sets that include the same Java package name.

– If your parts do not move between Smalltalk applications and you do not

have differently named configuration maps that include the same Smalltalk

applications.

If your situation differs from what is described above, the workaround is to

migrate one migration set version all the way through Stages 1 – 3, then clear

out the migration database, and then migrate the next migration set version all

the way through Stages 1 – 3.

Stages 2 and 3

v Restrictions for the VAGen Migration wizards:

– The Cancel button on the progress window is inoperable. You cannot cancel

the Stage 2 or 3 migration tool after it starts other than by using the Task

Manager.
v If you want to switch back and forth between your migration database and your

application databases, you must shut down the EGL development environment

each time you switch.

58 Rational Software Development Platform: VisualAge Generator to EGL Migration Guide

v Stage 2 and 3 are not supported on Linux environments.

Syntax migration

v The migration tool correctly converts SQL keywords used as column names

within the SQL record structure. However, the migration tool does not handle

SQL keywords used as column names within the SQL defaultSelectCondition for

a record or within the SQL clauses for a function. The workaround is to modify

the SQL defaultSelect Condition or SQL clause as described in “SQL reserved

words requiring special treatment” on page 225. This section provides a list of

SQL keywords and details of the syntax required for the SQL

defaultSelectCondition and SQL I/O statements.

v See “containerContextDependent Property” on page 36 for details on limitations

on your use of this property.

Chapter 2. Migration Tool Philosophy 59

60 Rational Software Development Platform: VisualAge Generator to EGL Migration Guide

Chapter 3. Handling ambiguous situations

There are a number of situations where the migration tool might not have all the

information from VisualAge Generator needed to produce the corresponding EGL

statement. These situations are called ambiguous situations because the

corresponding EGL statement could change or produce different results depending

on the inputs from VisualAge Generator. In these ambiguous situations, the

migration tool might not migrate to EGL statements that match what you intended

in VisualAge Generator. In many of the ambiguous situations, the EGL statements

that are produced vary, depending on your migration process:

v Whether you migrate with a program and its associates, and if so, the order in

which programs are migrated.

v Whether you migrate without a program, but with the necessary associated

parts, so that cross-part migration can still be accomplished.

v Whether you migrate without associates, so that the migration tool is limited in

the information it has available to make an intelligent choice.

Migrating with a program and its associates is the preferred way of migrating with

associates because it guarantees the maximum information. The tables that follow

explain the differences between migrating with and without associated parts for

the following part types:

v Shared data items

v Records

v Tables

v Map groups and maps

v Programs

v Functions, including I/O statements

v Other statements

v EZE words

The tables also show some potential problems that can arise for these ambiguous

situations and suggest possible solutions for these problems. No one solution is

best for every situation. For example, when there are two parts with the same part

name, renaming the one that is the least frequently used would have the least

effect in other areas of your code.

Handling ambiguous situations for data items

PACK data items with even length

VisualAge Generator: The length for PACK data items is specified as the number

of digits, up to a maximum of 18. Even lengths are recorded within the shared

data item definitions and for nonshared data items within record definitions.

However, in most editors, and in test and generation, the length that is used is the

next higher odd length, with a maximum of 18. Only the SQL Record Editor

displays the even length. For even length items used as host variables in SQL

WHERE clauses or in SQL statements that specify Execution Time Statement Build,

test and generation create a temporary variable with the even length.

© Copyright IBM Corp. 2004, 2006 61

EGL: The decimal primitive type is the replacement for the VAGen PACK type. In

VisualAge Generator Compatibility mode, EGL test and generation provide the

same support as in VisualAge Generator. For decimal items with even precision,

test and generation increase the precision by one in all records and use a

temporary variable with the even precision in SQL where clauses or prepare

statements. If VisualAge Generator Compatibility mode is not specified, EGL uses

the precision specified for the data item.

Associated part needed for migration: Not applicable.

 Table 10. Pack data items with even length

Migrating with the associated part Migrating without the associated part

The migration tool migrates pack data items based on

the VAGen Migration Preference Do not honor

evensql=y for items or variables.

If the preference is not selected, the migration tool

does the following:

v Uses the even or odd length specified in VisualAge

Generator for shared data item definitions,

regardless of whether the item is ever used in an

SQL row record.

v Uses the even or odd length specified in VisualAge

Generator for nonshared items in all record

definitions, because the item might be used as a

host variable in an SQL where clause or prepare

statement.

v Uses an odd length (or 18 if the item is the

maximum length) for nonshared items in tables,

function parameters, function return values, and

function local storage because the information to

determine an even number of digits was not

recorded in VisualAge Generator in these situations.

If the preference is selected, the migration tool always

uses an odd length (or 18 if the item is the maximum

length) for all items or variables. The tool issues a

warning message for any data item that specifies

evensql=y.

The migration tool does the same things as mentioned in

the Migrating with the associated part column.

62 Rational Software Development Platform: VisualAge Generator to EGL Migration Guide

Table 10. Pack data items with even length (continued)

Migrating with the associated part Migrating without the associated part

Potential Problem 1: A problem arises if you select

the preference so that evensql=y is migrated to an odd

length. In this situation, there might be a runtime

performance impact due to using host variable lengths

that do not match the SQL column definition.

Solution 1: Review the migration log information for

any dataItem part that specified evensql=y. Review

any SQL table and view definitions to determine

whether the definitions match the dataItem part

definition. Also review any SQL where clauses and

prepare statements that use variables that specify the

dataItem part as a type definition.

Potential Problem 2: A problem also arises if you

deselect the preference so that evensql=y is honored

during migration and you later decide to eliminate

the use of VisualAge Compatibility mode. In this

situation, overflow might occur due to having fewer

significant digits than in VisualAge Generator

Compatibility mode.

Solution 2: Review all decimal dataItem part

definitions and primitive fields in EGL records for

even length items. Assess whether overflow might

occur for any of these items.

Potential Problems: The same potential problems and

solutions as listed in the Migrating with the associated part

column apply.

Shared edits and messages

VisualAge Generator: A shared dataItem part definition can specify default edits

and messages for both maps and UI records.

EGL: There is only one set of edit and message properties for a dataItem part

definition. The migration tool merges the map and UI properties for the data

items.

Associated part needed for migration: Not applicable.

Chapter 3. Handling ambiguous situations 63

Table 11. Shared edits and messages

Migrating with the associated part Migrating without the associated part

The migration tool merges map and UI edits as follows:

v For each edit or message, the migration tool does the first of the

following that applies:

– If a UI edit is specified, the migration tool converts the UI edit

and its associated message information to the corresponding

EGL properties.

– If only a map edit is specified, the migration tool converts the

map edit and its associated message to the corresponding EGL

properties.

– If the UI message is specified without its associated UI edit,

the migration tool converts the UI message to the

corresponding EGL property.

– If the map message is specified without its associated map

edit, the migration tool converts the map message to the

corresponding EGL property.

– If UI and map edit and message information are not specified,

the migration tool does not set the corresponding EGL

properties. The normal EGL defaults apply.

v In VisualAge Generator, Justify and Hex edit are only specified

for map edits, so they are always used to set the corresponding

EGL properties.

v For a numeric data item, the migration tool migrates as follows:

– If the sign edit is not specified, the migration tool sets the EGL

sign property to leading if any UI edit is specified.

– If no UI edits are specified, the migration tool sets the EGL

sign property to none.

Except as noted later in “Map edit routine for

shared data items” on page 64, the migration

tool migrates the default edits and messages

in the same way both with and without the

associated parts.

Potential Problem 1: A problem only arises if conflicting map edits

and UI edits exist in VisualAge Generator and you really intend the

edits to differ between maps and UI records. The problem does not

occur until the item is added to a text or print form.

Note: If you never used VAGen Web Transactions, only map edits

should exist in VisualAge Generator and you should not have a

problem.

Possible Solution: Other than adding a comment to the dataItem

part definition to list the VAGen map item edits and messages,

there is nothing you can do for the dataItem part definition. If you

add the item to a text or print form, you can override any

properties that need to differ for that particular form.

Potential Problem 2: A problem can also arise if you use the item in

an EGL VGUI record. The item might have some additional edits or

messages that were migrated from the VAGen map edits.

Solution: Always review the edits for fields defined with a type

definition in a VGUI record.

The same potential problems mentioned in the

Migrating with the associated part column apply.

You can use the same solutions.

Map edit routine for shared data items

VisualAge Generator: A shared data item definition can have a map edit routine

that is a table, a function, or EZEC10 or EZEC11. The edit message is only used if

the edit routine is EZEC10, EZEC11, or a table.

64 Rational Software Development Platform: VisualAge Generator to EGL Migration Guide

EGL: A data item can have both a validatorDataTable and a validatorFunction. The

data item can also have both a validatorDataTableMsgKey and a

validatorFunctionMsgKey.

Associated part needed for migration: Either the table or the function part.

 Table 12. Map edit routine for shared data items

Migrating with the associated part Migrating without the associated part

The first time the shared data item is migrated, the

migration tool does the first of the following that

applies:

v If the editRoutineName is EZEC10 or EZEC11, the

migration tool sets the validatorFunction property

to the EGL equivalent system library function. The

migration tool also sets the

validatorFunctionMsgKey to the edit message, if

any.

v If the editRoutineName is a function, then the

migration tool sets the validatorFunction property.

The migration tool omits the

validatorFunctionMsgKey because it is not used in

VisualAge Generator. The migration tool also adds

the function as an associate of the data item part so

that an import statement is created in Stage 3.

v If the editRoutineName is a table, then the

migration tool sets the validatorDataTable property.

The migration tool also sets the

validatorDataTableMsgKey to the edit message, if

any. The migration tool also adds the table as an

associate of the data item part so that an import

statement is created in Stage 3.

v If the edit routine is not specified but the edit

message is specified, the migration tool sets the

validatorDataTableMsgKey to the edit message.

Note: Even when migrating in program context, the

editRoutineName might not be available if the shared

item is not used on a map or if its edits on the map

differ from what was specified in the shared item

definition.

If a function or table with the same name as the

editRoutineName is not available, the migration tool does

the first of the following that applies:

v If the editRoutineName is EZEC10 or EZEC11, the

migration tool sets the validatorFunction property to the

EGL equivalent system library function name. The

migration tool also sets the validatorFunctionMsgKey to

the edit message, if any.

v If the editRoutineName is longer than 7 characters, it

must be a function name, so the migration tool sets the

validatorFunction property. The migration tool omits the

validatorFunctionMsgKey because it is not used in

VisualAge Generator.

v If an edit message is specified, the migration tool sets the

validatorDataTable and validatorDataTableMsgKey.

v Otherwise, the migration tool sets the validatorFunction

property and issues an error message.

If the edit routine is not specified but the edit message is

specified, the migration tool sets the

validatorDataTableMsgKey to the edit message.

Potential Problem: A problem only arises if a function

and dataTable have the same name, most likely in

different subsystems. In this situation, one subsystem

uses a function and another subsystem uses a

dataTable. The problem does not occur until the item

is added to a text form.

Possible Solution: Rename the dataTable so there are

no longer two parts with the same name. Specify both

a validatorFunction and validatorDataTable property

for the item definition. If you add the item to a text

form, delete the validatorFunction or

validatorDataTable property, whichever is not needed

for that particular form. Disadvantage: You must

modify your programs and forms to use the new

dataTable name.

Potential Problem 1: A problem arises if the migration tool

guesses incorrectly.

Possible Solution: Correct the data item definition.

Potential Problem 2: The same problem listed under the

Migrating with the associated part column can also occur. You

can use the same solution.

Chapter 3. Handling ambiguous situations 65

Fill characters for shared data items

VisualAge Generator: The default fill character for map edits is null for character,

mixed or DBCS; blank for numerics; and 0 for hex. The default fill character for UI

edits is blank for character, mixed, DBCS, unicode, and numerics, and 0 for hex.

Null is not a valid fill character for UI records. A different fill character can be

specified for map edits and UI edits.

EGL: There is only one default fillCharacter property for a dataItem part. The

migration tool merges the map and UI fillCharacter properties for the data items.

Associated part needed for migration: Not applicable.

 Table 13. Fill characters for shared data items

Migrating with the associated part Migrating without the associated part

The first time the shared data item is migrated, the

migration tool does the first of the following that

applies:

v If the UI edits specify a fill character, the migration

tool migrates the character to the EGL fillCharacter

property. The tool converts N to N because null fill

is not valid for UI records in VisualAge Generator.

v If the map edits specify a fill character, the

migration tool migrates the character to the EGL

fillCharacter property. The tool converts N to null

fill.

v If neither the UI edits nor the map edits specify a

fill character, the migration tool does not set the

EGL fillCharacter property.

The migration tool does the same thing as mentioned in the

Migrating with the associated part column.

Potential Problem: A problem only arises if you add a

field using a type definition to a dataItem part that

was migrated using one type of edits to a different

type of user interface (form or VGUI record).

Possible Solution: Always review the fill character

when adding a new field to a form or VGUI record.

The same problem listed under the Migrating with the

associated part column can occur. You can use the same

solution.

Handling ambiguous situations for records

Redefined records

VisualAge Generator: The redefined record type provides a different data item

layout for another record. The redefined record specifies the name of the record it

is redefining. For example, RecordA is a REDEFINED record that redefines

RecordB. VisualAge Generator determines whether RecordA is really a redefinition

of RecordB based on the use of RecordA within the program. If RecordA is used as

a called parameter, RecordA is not treated as a redefinition of RecordB.

EGL: RecordA is a basicRecord. Redefinition information is only provided within a

program definition -- not in the definition of RecordA.

Associated part needed for migration:

v When migrating a redefined record: not applicable.

v When migrating a program: the redefined record (RecordA).

66 Rational Software Development Platform: VisualAge Generator to EGL Migration Guide

Table 14. Redefined records

Migrating with the associated part Migrating without the associated part

When migrating a redefined record, the migration tool

does the following:

v Migrates the redefined record (RecordA) to a

basicRecord.

v Includes a VAGen Info comment in RecordA

indicating it redefined RecordB.

v Issues an informational message that RecordA

redefines RecordB.

When migrating a redefined record, the migration tool does

the same thing mentioned in the Migrating with the

associated part column.

When migrating a program, if RecordA is available,

the migration tool does the following:

v If RecordA is treated as a redefinition of RecordB in

VisualAge Generator, the migration tool includes

the redefines property in the declaration for

RecordA.

v If RecordA is not treated as a redefinition of

RecordB in VisualAge Generator, the migration tool

does not include the redefines property in the

declaration for RecordA.

When migrating a program, if RecordA is not available, the

migration tool does not know that RecordA is a redefined

record. The migration tool does not include the redefines

property in the declaration for RecordA.

Considerations for new use: A problem only arises if

you need to use RecordA and RecordB in a new

program. You must remember to include the redefines

property for RecordA whenever you want RecordA to

be treated as a redefinition of RecordB.

Potential Problem: A problem arises if the VAGen program

uses RecordA as a redefinition. Immediately after

migration, the program will not be a valid EGL program

because the definition for RecordA and the import

statement will be missing. There will be an error in the

Problems view. If you migrate RecordA and add the import

statement to the program, this will convert the program

into a valid EGL program. However, there will be two data

areas -- one for RecordA and one for RecordB. EGL will not

detect this change during validation or generation. The

program will not run the same as in VisualAge Generator.

Solution: If you migrate additional records or add import

statements to a program, review the record definitions for a

VAGen Info comment. If there is a VAGen Info comment

specifying that that RecordA is a redefinition for RecordB,

update the program to include the redefines property for the

declaration of RecordA.

Considerations: The same considerations for new use listed

under the Migrating with the associated part column can also

occur.

Level 77 items in records

VisualAge Generator: Working storage records can have level 77 items.

EGL: Records cannot have level 77 items.

Associated part needed for migration:

v When migrating a working storage record: not applicable.

v When migrating a program: the primary working storage record.

v When migrating a function: the working storage record.

Chapter 3. Handling ambiguous situations 67

Table 15. Level 77 items in records

Migrating with the associated part Migrating without the associated part

When migrating any working storage record that

contains level 77 items, the migration tool does the

following:

v Splits the working storage record that contains

level 77 items into two basicRecords -- one for

the working storage structure and one for the

level 77 items. The new level 77 record name is

the original working storage record name with a

customer-supplied suffix.

v Places the new level 77 record in the same file

with the original working storage record.

v Issues an informational message that the level 77

record is being created.

When migrating any working storage record that contains

level 77 items, the migration tool does the same things

mentioned in the Migrating with the associated part column.

When migrating a program, if the primary working

storage record is available and contains level 77

items, the migration tool adds a record declaration

to the program for the new level 77 record if the

primary working storage record contained level 77

items.

When migrating a program, if the primary working storage

record is not available, the migration tool does not know

whether the primary working storage record contains level 77

items. The migration tool does not include a record declaration

for a level 77 record.

When migrating a function, if the working storage

record is available, the migration tool changes

qualified references to the level 77 items within the

function to use the new level 77 record name.

When migrating a function, if the working storage record is

not available, the migration tool does not change the

qualification of item names.

Potential Problem: A problem only arises for the

level 77 item if there are two records of the same

name, possibly in different subsystems, and the

item is a level 77 item in one record and not in

another.

Possible Solution: Move the item to a (new)

common record and change the item qualification

in all functions. Alternatively, do not qualify the

item in the functions.

Considerations for new use: There is a potential

problem if you specify the original working storage

record as the inputRecord property for a new

program. Be sure to consider whether you also

need to add a declaration for the new level 77

record.

Potential Problem 1: A problem arises if the primary working

storage record contained level 77s and the program used the

level 77s. Validation for the program will fail due to missing

item definitions.

Solution: Add the level 77 record to the program.

Potential Problem 2: A problem arises for a function if the

qualified data item is really a VAGen level 77 item.

Solution: Modify the function to provide the correct qualifier

for the data item.

Potential Problem 3: The same problem listed under the

Migrating with the associated part column can also occur. You

can use the same solution.

Considerations: The same considerations for new use listed

under the Migrating with the associated part also apply.

Alternate specification records

VisualAge Generator: A record can specify another record as the alternate

specification (altspec) record. For example, if RecordA specifies an altspec of

RecordB, then RecordB provides the structure for RecordA. For SQL records,

RecordB also provides the list of SQL tables and keys for RecordA. If RecordA

specifies a key item, that item is merged with the keys from RecordB when

determining the default selection condition. For DL/I segment records, the field

names in RecordB are also the names of the fields in the DL/I PSB.

EGL: A record can embed another record to obtain the record structure. Only the

record structure is included. Each SQL record must explicitly state its entire set of

68 Rational Software Development Platform: VisualAge Generator to EGL Migration Guide

SQL tables and keys. For DL/I segment records, if RecordB is also a DL/I segment,

then RecordB can provide the dliFieldName property to specify the name of the

field in the DL/I PSB. Alternatively, if RecordB is not a DL/I segment, then

RecordA can provide the dliFieldName property as an override to the embed

statement.

Associated part needed for migration: If RecordA is an SQL record or a DL/I

segment, you need the record specified as the altspec record (RecordB).

 Table 16. Alternate specification records

Migrating with the associated part Migrating without the associated part

If RecordA is an SQL record that specifies an alternate

specification of RecordB and RecordB is available, the

migration tool does the following for RecordA:

v Creates the list of table names from the list of tables

specified in RecordB.

v Creates the list of keys by merging the following:

– The items, if any, in RecordB that specified

key=yes.

– The item, if any, in RecordA that is specified as

the key item.

The order of the keys is the order in which the items

appear in the structure of RecordB.

v Includes the embed statement pointing to RecordB.

v Migrates any !itemColumnName variables in the

default selection conditions of RecordA to the

corresponding SQL column names from RecordB.

If RecordA is an SQL record that specifies an alternate

specification of RecordB, and RecordB is not available, the

migration tool does the following for RecordA:

v Sets the tableNames property to

###TABLES_NOT_FOUND###

v Sets the keyItems property to

###KEYS_NOT_FOUND###, followed by the item, if

any, that is specified as the key item in RecordA.

v Includes the embed statement pointing to RecordB.

v Migrates any !itemColumnName variables in the default

selection conditions of RecordA to !itemColumnName

without any substitution.

v Issues error messages that the tables and keys could not

be determined.

v Issues an error message if there are any

!itemColumnName variables.

If RecordA is a DL/I segment record that specifies an

alternate specification of RecordB and RecordB is

available and is not a DL/I segment record, the

migration tool does the following for RecordA:

v Includes the embed statement pointing to RecordB.

v Includes an override statement for each field from

RecordB that must be renamed. The override

statement sets the dliFieldName property to the

original VAGen field name so that the DL/I field

name is available in EGL.

If RecordA is a DL/I segment record that specifies an

alternate specification of RecordB and RecordB is not

available, the migration tool does the following for

RecordA:

v Includes the embed statement pointing to RecordB.

v Issues an error message that the tool cannot determine

whether any override statements are required to

preserve the dliFieldName information.

Chapter 3. Handling ambiguous situations 69

Table 16. Alternate specification records (continued)

Migrating with the associated part Migrating without the associated part

Potential Problem 1: A problem only arises for SQL if

the definition for RecordB differs, generally in different

subsystems.

Solution 1: Duplicate the definition of RecordA so that

each subsystem has its own definition of RecordA.

Alternatively, specify containerContextDependent=yes for

RecordA.

Potential Problem 2: A problem also arises for DL/I if

the definition for RecordB differs, generally in different

subsystems.

Solution 2: The solution is the same as that described

in Solution 1.

Problem 1: EGL validation for SQL record RecordA results

in messages in the Problems view.

Solution 1: Edit RecordA and include the appropriate table

and key information based on RecordB. Also replace any

!itemColumnName variables in the default selection

condition with the corresponding SQL column names from

RecordB.

Potential Problem 2: A problem arises for DL/I segment

RecordA if RecordB contains fields that must be renamed

due to reserved words or because they start with the # or

@ symbol. In this case, if the field is used in a default SSA

and the renamed field name is longer than 8 characters or

contains a character such as underscore that is invalid for

DL/I, then there will be a message on the Problems list.

Solution 2: Edit RecordA and include the override

statements to specify the DL/I field name.

Potential Problem 3: A problem also arises for DL/I

segment RecordA if the renamed field is used in a default

SSA and is a valid DL/I name. In this case, there will be a

runtime error when you run the program.

Solution 3: Edit RecordA and include the override

statements to specify the DL/I field name.

Different definitions with the same record name

VisualAge Generator: Records include shared data items based on the projects and

packages currently in the workspace. This enables different subsystems or

programs to have different definitions of the same record name.

EGL: Provides the containerContextDependent=yes property for record definitions.

This property enables you to specify that the dataItem parts used for type

definitions are based on the program’s part name space.

Associated part needed for migration: Not applicable. You should have complete

understanding of your VAGen part structure for all subsystems to be able to set

this record property.

 Table 17. Different definitions with the same record name

Migrating with the associated part Migrating without the associated part

The migration tool does not set the

containerContextDependent=yes property for record

definitions. If you need this capability, you must set

the property for each record that requires it.

The migration tool does the same thing as mentioned in the

Migrating with the associated part column.

Reserved words and UI record names

VisualAge Generator: VisualAge Generator does not have reserved words.

VisualAge Generator permits the # and @ symbols as the first character of a UI

record name or an item in a UI record.

70 Rational Software Development Platform: VisualAge Generator to EGL Migration Guide

EGL: EGL has reserved words. In addition, EGL does not permit the # or @ symbol

as the first character of a record name. A UI record name cannot be a reserved

word and the name cannot start with the # or the @ symbol. A field in a UI record

cannot be a reserved word and the name cannot start with the # or the @ symbol.

Associated part needed for migration: Not applicable.

 Table 18. Reserved word and UI record names

Migrating with the associated part Migrating without the associated part

When migrating a UI record, if the record name is a

reserved word or starts with the # or @ symbol, the

migration tool does the following:

v Renames the UI record by including the

Renaming prefix at the beginning of the record

name. This is identical to the renaming that the

migration tool does for other VAGen records. You

can specify the Renaming prefix by setting the

VAGen Migration Syntax Preference.

v Includes the alias property and sets it to the

original VAGen name for the UI record.

v Changes the .egl file name for the UI record to

match the renamed UI record during Stage 3 of

migration.

v Issues a warning message.

The migration tool does the same thing as mentioned in the

Migrating with the associated part column.

When migrating an item in a UI record, if the item

name is a reserved word or starts with the # or @

symbol, the migration tool does the following:

v Renames the item by including the Renaming

prefix at the beginning of the item name. This is

identical to the renaming that the migration tool

does for fields in other VAGen records.

v Includes the alias property for the field and sets

it to the original VAGen name for the field.

The migration tool does the same thing as mentioned in the

Migrating with the associated part column.

The migration tool treats a UI record like any other

record for the purposes of renaming. The tool uses

the EGL part name for all references to a UI record,

including the following:

v Program part:

– First UI record

– Record declaration

v UI record part - First UI record in the Link

parameters

v Function part - any use of the record in a

statement

The migration tool does the same thing as mentioned in the

Migrating with the associated part column.

Potential Problem: None. The alias property

provides the same JSP name as in VAGen.

Potential Problem: None. The alias property provides the

same JSP name as in VAGen.

Handling ambiguous situations for tables

Reserved words and table names

VisualAge Generator: VisualAge Generator does not have reserved words. The #

or @ symbols are not valid in VAGen table names.

Chapter 3. Handling ambiguous situations 71

EGL: EGL has reserved words. In addition, EGL does not permit the # or @ symbol

as the first character of a part name. A dataTable name cannot be a reserved word.

Associated part needed for migration: Not applicable.

 Table 19. Reserved words and table names

Migrating with the associated part Migrating without the associated part

The migration tool does not rename the table for

you. The migration tool used in Stage 1 of migration

issues an error message if the table name matches

the reserved word list. If you do not change the table

name, the migration tool used in Stage 2 of

migration also issues an error message.

The migration tool does the same thing as mentioned in the

Migrating with the associated part column.

Potential Problem: A problem only arises if a

dataTable name matches the reserved word list. EGL

validation results in a message in the Problems view.

Solution: Rename the table in VisualAge Generator

before you migrate, or rename the dataTable in EGL

after you migrate. If you change the name in

VisualAge Generator, be sure to change all references

to the table in programs, maps, functions, UI records,

and data item definitions. If you change the name in

EGL, you must change the name of the dataTable

and all references to it. This includes references in

the following places:

v Program use declaration statements

v Logic statements in programs and functions

v Data item validatorDataTable properties

v Form field validatorDataTable properties

v VGUI record validatorDataTable properties

If you want to keep the original table name as the

name for the generated dataTable, set the alias

property to the original dataTable name. If you do

not specify the alias property, be sure to change any

non-EGL references to the dataTable name, including

CICS program definitions.

The same problem listed under the Migrating with the

associated part column can occur. You can use the same

solution.

Handling ambiguous situations for map groups and maps

Reserved words and formGroup names

v VisualAge Generator: VisualAge Generator does not have reserved words. The #

or @ symbol are not valid in VAGen map group names.

v EGL: EGL has reserved words. In addition, EGL does not permit the # or @

symbol as the first character of a part name. A formGroup name cannot be a

reserved word.

v Associated part needed for migration: Not applicable.

72 Rational Software Development Platform: VisualAge Generator to EGL Migration Guide

Table 20. Reserved words and formGroup names

Migrating with the associated part Migrating without the associated part

The migration tool does not rename the formGroup for

you. The migration tool used in Stage 1 of migration

issues an error message if the map group name

matches the reserved word list. If you do not change

the map group name, the migration tool used in Stage

2 of migration also issues an error message.

The migration tool does the same thing as mentioned in

the Migrating with the associated part column.

Potential Problem: A problem only arises if the

formGroup name matches the reserved word list. EGL

validation results in a message in the Problems view.

Solution: Rename the map group in VisualAge

Generator before you migrate or the formGroup in EGL

after you migrate. If you rename the map group in

VisualAge Generator, be sure to rename all the maps

that belong to the map group. Also change all

references to the map group in all program definitions.

If you rename the formGroup in EGL, you must change

the name of the formGroup and all references to it,

including references in program use declaration

statements. If you want to keep the original map group

name as the name for the generated formGroup, set the

alias property to the original map group (formGroup)

name. If you do not specify the alias property, be sure

to change any non-EGL references to the formGroup

name, including CICS program definitions.

The same problem listed under the Migrating with the

associated part column can occur. You can use the same

solution.

Map group and formGroup requirements

VisualAge Generator: A map group is only required if there is a floating area

specification.

EGL: A formGroup is always required to contain the forms.

Associated part needed for migration: The map group and all maps in the map

group.

 Table 21. Map group and formGroup requirements

Migrating with the associated part Migrating without the associated part

If a map group does not exist, the migration tool does

the following:

v Creates a formGroup for all maps with the same

map group name.

v Puts all the forms for the same formGroup in the

same EGL file.

v Nests the forms within the formGroup definition if

not migrating with single file migration.

v Issues an error message indicating that the

formGroup requires editing to nest the forms if

migrating in single file mode.

The migration tool does the same things mentioned in the

Migrating with the associated part column. However, if you

do not have the map group and all its maps in the same

migration set, there can be problems as described below.

Chapter 3. Handling ambiguous situations 73

Table 21. Map group and formGroup requirements (continued)

Migrating with the associated part Migrating without the associated part

Potential Problem: None. All maps for the map group

should be included in the same migration set. Because

the migration set represents what is generated, the

migration set should include all maps in the map

group.

If you are migrating in single file mode, be sure to

include all the maps in the map group in the same

External Source Format file.

Potential Problem: If all maps for the same map group

name are not included in the same migration set (or

External Source Format file for single file mode migration),

the formGroup will not include all the forms.

Possible Solution 1: Be sure the migration set includes all

maps with the same map group name.

Possible Solution 2: Add the missing forms to the EGL

file and nest them within the formGroup definition.

Floating areas and starting positions

VisualAge Generator: VisualAge Generator permits, but does not recommend,

having different floating area sizes and starting positions for different device types

that have the same device size.

EGL: EGL formGroups and print forms only specify the device size. EGL text

forms specify both the device size and the form size. EGL only permits one set of

margin specifications for a device size.

Associated part needed for migration: Not applicable.

 Table 22. Floating areas and starting positions

Migrating with the associated part Migrating without the associated part

The migration tool does the following:

v Issues an error message if two or more devices have

the same device size but different floating area sizes

or starting positions.

v Includes the EGL equivalent device size and margin

specifications for each VAGen floating area

specification. If two or more VAGen devices convert

to identical EGL device size and margin

specifications, the migration tool only includes one

entry for EGL.

The migration tool does the same things mentioned in the

Migrating with the associated part column.

Potential Problem: A problem only arises if two or

more devices with the same device size specify

different floating area sizes or starting positions in

VisualAge Generator. EGL validation results in a

message in the Problems view.

Possible Solution: Review the error messages. Edit the

formGroup definition to specify the one floating area

size and starting position that you require for this

device size.

The same problem listed under the Migrating with the

associated part column can occur. You can use the same

solution.

Map groups, maps, and device sizes

VisualAge Generator: VisualAge Generator supports device sizes for display maps

with a depth and width of 6x40, 12x40, 16x64, and 255x160.

EGL: EGL supports common device sizes for text forms, but does not permit

device sizes of 6x40, 12x40, 16x64, and 255x160 for COBOL generation. These

devices are supported for Java generation..

74 Rational Software Development Platform: VisualAge Generator to EGL Migration Guide

Associated part needed for migration: Not applicable.

 Table 23. Map groups, maps, and device sizes

Migrating with the associated part Migrating without the associated part

When migrating a map group, the migration tool

includes the original depth and width in the screenSize

property within the ScreenFloatingArea property. The

tool also issues a warning message.

The migration tools does the same thing as mentioned in

the Migrating with the associated part column.

When migrating a display map, the migration tool

includes the original depth and width in the screenSizes

property for the migrated text form. The tool also

issues a warning message.

The migration tools does the same thing as mentioned in

the Migrating with the associated part column.

Potential Problem: These devices are not supported by

EGL COBOL generation. There will be an error during

generation.

Solution: If you generate for COBOL, edit the

formGroup and the text form in EGL and either remove

or change the obsolete screen size.

The same problem listed under the Migrating with the

associated part column can occur. You can use the same

solution.

Map names and help map names

VisualAge Generator: Map names are two-part names consisting of the map group

and the map name. The main map group and the help map group for a program

can both contain a map with the same name. For example, for Program X, main

map group GROUPA and help map group GROUPH can each contain a map

named MAP1. A map name is limited to 8 characters. A map name can be the

same as the program name. The # and @ symbols are not valid in VAGen map

group names, but the # and @ symbols are permitted in the map name portion of a

map name.

EGL: Form names do not include the formGroup name. Instead, text and print

forms are defined within a formGroup part. EGL also requires that all form names

in the main formGroup and help formGroup be unique (no duplicate form names

in the two formGroups for a program). EGL does not permit a form name to be

the same as the name of a program. In addition, EGL does not permit the form

name to be a reserved word or to use the # or @ symbol as the first character of

the form name. EGL allows form names to be longer than 8 characters at definition

time. At generation time, if an alias is specified, the alias is used as the form name.

For COBOL generation, the form name or the alias is limited to 8 characters.

Duplicate names are permitted in the main formGroup and help formGroup for

the generated code.

Associated parts needed for migration: When migrating a map group, you need

the program and its map group, help map group, and all the maps in both map

groups.

Chapter 3. Handling ambiguous situations 75

Table 24. Map names and help map names

Migrating with the associated parts Migrating without the associated parts

Based on the first program to migrate either the

main map group or the help map group, the

migration tool does the following:

v Performs any renaming for map names due to

reserved words or the # or @ symbol being used

as the first character of the map name portion of

the name. Maps in both the program’s main map

group and help map group are renamed as

necessary.

v Checks the names of all maps in the program’s

help map group for duplicate names with the

main map group.

v Compares the program name to the names of all

maps in the program’s main map group and help

map group.

If a map in the help map group does not have the

same name as any map in the main map group, the

migration tool does not change the help map name.

If a map in the help map group has the same name

as any map in the program’s main map group, the

migration tool does the following:

v If the help map contains only constants, the

migration tool does the following:

– Renames the help map to helpMapName plus

a customer-specified suffix.

– Includes the alias property with the original

help map name.

– Changes the helpForm property for any map

to specify the new help map name.

v If a map in the help map group contains

variables, the migration tool does the following:

– Issues an error message.

– Does not rename the map.

– Migrates the map.

This is because the map could be used by some

other program that specifies the help map group

as that program’s main map group.

If a map in the help map group only contains

constant fields and the map name is the same as the

program name, the migration tool renames the help

map. The same processing is done as occurs when

renaming can be done for conflicting map names in

the help map group and main map group.

If a map in the help map group contains any

variable fields and is named the same as the

program name or if a map in the main map group

is named the same as the program, the migration

tool does not rename the map. The same processing

is done as occurs when renaming cannot be done

for conflicting map names in the help map group

and main map group.

When migrating map groups, if a program is not available,

the migration tool does not know that two map groups are

related and does not know whether a map group is ever

specified as a help map group. The migration tool does the

following:

v Performs any renaming for map names due to reserved

words or the # or @ symbol.

v Does not check for additional renaming of help maps.

76 Rational Software Development Platform: VisualAge Generator to EGL Migration Guide

Table 24. Map names and help map names (continued)

Migrating with the associated parts Migrating without the associated parts

Potential Problem 1: A problem can arise if a

formGroup is used as a main formGroup in one

program and a help formGroup in another program.

Possible Solution: Separate the help formGroup

into two formGroups, one containing only help

forms and the other containing forms with variable

fields. Specify the formGroup that contains only

help forms as the help formGroup for the original

program. Specify the formGroup containing the

forms with variable fields as the main formGroup

and the formGroup containing only the help forms

as the help formGroup for the second program.

Potential Problem 2: A problem arises if a map in

the help formGroup contains variable fields and has

the same name as a map in the main formGroup.

Possible Solution: Same as possible solution for

Problem 1.

Potential Problem 3: A problem can arise if the

same help formGroup is shared by multiple

programs. In this case, the migration tool might not

rename all the help forms that need to be renamed

for the various programs.

Possible Solution: Rename all the necessary forms

in the help formGroup by adding your help map

suffix to the name. Include the alias property to

provide the original help map name for use during

generation. Change all corresponding text forms in

all formGroups to specify the new help form name.

Potential Problem: A problem only arises if the formGroup is

used in a program and there is a conflict between the form

names in the main formGroup and help formGroup.

Possible Solutions: The same solutions as shown for

Migrating with the associated part apply.

Numeric variable fields

VisualAge Generator: A numeric field on a map has one length. The length should

be long enough to allow for all the digits, the decimal point, sign, currency

symbol, and numeric separator. However, if the field is not long enough at

runtime, VisualAge Generator omits the currency symbol and numeric separator.

VisualAge Generator also omits the sign if it is positive. If necessary to fit into the

space allowed, VisualAge Generator drops the high order digits.

EGL: Variable fields on a form specify both a type definition, which includes the

number of digits and decimals, and a fieldLen property that specifies the space

that the data occupies on the form. If the fieldLen is not big enough to contain all

the digits and formatting characters at runtime, EGL issues a runtime message.

Associated part needed for migration: Not applicable.

Chapter 3. Handling ambiguous situations 77

Table 25. Numeric variable fields

Migrating with the associated part Migrating without the associated part

When migrating a numeric field on the map, the

migration tool sets the length and fieldLen as follows:

v The migration tool always sets the fieldLen to the

same length as specified for the variable field in

VisualAge Generator.

v The migration tool sets the length and decimals in

the type definition as follows:

– If the variable field does not specify decimals,

the migration tool sets the length in the type

definition to the fieldLen.

– If the variable field specifies decimals, the

migration tool sets the length in the type

definition to fieldLen minus 1 to allow for entry

of the decimal point. This technique avoids any

overflow problems that might occur at run time.

The migration tool does the same thing as mentioned in the

Migrating with the associated part column.

Potential Problem: If the field length on the form is

not large enough at run time to contain all the digits,

decimal point, sign, currency symbol, and numeric

separator characters, EGL issues a run time error

message.

Solution: Change the form definition so that the

fieldLen is large enough to contain the largest

possible number that will occur at run time and all

the formatting characters that you specify.

The same problem listed under the Migrating with the

associated part column can occur. You can use the same

solution.

Map variable fields and edit routines

VisualAge Generator: A map variable field can have an edit routine that is a table,

a function, EZEC10, or EZEC11. The edit message is only used if the edit routine is

EZEC10, EZEC11, or a table.

EGL: A form field can have both a validatorDataTable and a validatorFunction. A

form field can also have both a validatorDataTableMsgKey and a

validatorFunctionMsgKey.

Associated part needed for migration: Either the table or function part.

78 Rational Software Development Platform: VisualAge Generator to EGL Migration Guide

Table 26. Variable map fields and edit routines

Migrating with the associated part Migrating without the associated part

The first time the map is migrated, the migration

tool does the first of the following that applies:

v If the editRoutineName is EZEC10 or EZEC11,

the migration tool sets the validatorFunction

property to the EGL-equivalent system library

function. The migration tool also sets the

validatorFunctionMsgKey to the edit message, if

any.

v If the editRoutineName is a function, then the

migration tool sets the validatorFunction

property. The migration tool omits the

validatorFunctionMsgKey because it is not used

in VisualAge Generator.

v If the editRoutineName is a table, then the

migration tool sets the validatorDataTable

property. The migration tool also sets the

validatorDataTableMsgKey to the edit message, if

any.

If a function or table with the same name as the

editRoutineName is not available, the migration tool does the

first of the following that applies:

v If the editRoutineName is EZEC10 or EZEC11, the

migration tool sets the validatorFunction property to the

EGL equivalent system library function name. The

migration tool also sets the validatorFunctionMsgKey to the

edit message, if any.

v If the editRoutineName is longer than 7 characters, it must

be a function name, so the migration tool sets the

validatorFunction property. The migration tool omits the

validatorFunctionMsgKey because it is not used in

VisualAge Generator.

v If an edit message is specified, the migration tool sets the

validatorDataTable and validatorDataTableMsgKey.

v If an edit message is not specified, the migration tool sets

the validatorFunction property and issues an error message.

Potential Problem: A problem only arises if a

function and dataTable have the same name (most

likely in different subsystems) and two programs

share the same formGroup (most likely in the same

subsystem) and one program expects to use the

function and the other program expects to use the

dataTable.

Possible Solution: Review programs that share a

formGroup. If the situation arises, create a separate

formGroup to use the validatorDataTable.

Disadvantage: There are now two formGroups to

maintain. You can minimize this disadvantage by

moving identical forms to a common file and then

specifying the use formName statement in each

formGroup to point to the common forms.

Potential Problem: A problem only arises if the migration tool

guesses incorrectly. Any program that uses this form might

expect a dataTable when the migration tool specified a

function.

Possible Solution: Review the uses of maps that have error

messages.

Map fields and the numeric hardware attribute

VisualAge Generator: VisualAge Generator supports the numeric hardware

attribute for character constant fields, character variable fields, and numeric

variable fields. The numeric hardware attribute prevents the end user from typing

non-numeric data in a variable field.

EGL: EGL only supports the isDecimalDigit attribute for character variable fields.

Numeric fields have a soft edit to ensure that only valid numeric characters and

formatting characters such as a sign or decimal point are entered into the field.

Associated part needed for migration: Not applicable.

Chapter 3. Handling ambiguous situations 79

Table 27. Map fields and the numeric hardware attribute

Migrating with the associated part Migrating without the associated part

The migration tool does the following:

v For any character variable on a map that specified

the numeric hardware attribute, the tool includes

isDecimalDigit = yes property.

v For any character constant on the map, the tool

always omits the isDecimalDigit property.

v For any numeric variable field on the map, the

tool always omits the isDecimalDigit property.

The migration tool does the same thing as mentioned in the

Migrating with the associated part column.

Potential Problem: The end users will notice a slight

change at run time because they will be able to type

non-numeric data into numeric fields. EGL will

issue a runtime error message if this occurs.

Possible Solution: Consider notifying your end

users that this is an expected difference when

changing from VAGen-generated code to

EGL-generated code.

The same problem listed under the Migrating with the

associated part column can occur. You can use the same

solution.

Map arrays and attributes

VisualAge Generator: VisualAge Generator permits, but does not recommend,

using different attributes for the elements of an array. For example, in VisualAge

Generator the protection, input required, require fill on input, numeric hardware

attribute, modified data tag, and light pen detect can vary for each element of the

map array.

EGL: In EGL, the only properties that can be overridden for an array item are the

field presentation properties (color, highlight, intensity, protect, modified, and

outline) plus cursor, position, and value.

Associated part needed for migration: Not applicable.

 Table 28. Map arrays and attribute fields

Migrating with the associated part Migrating without the associated part

The migration tool uses the following properties for

the first element of the array (array index 1) to set

the EGL equivalent properties: input required,

require fill on input, numeric hardware attribute, and

light pen detect. EGL uses the properties for the first

element of the array for all the elements of the array.

The migration tool does the same thing as mentioned in the

Migrating with the associated part column.

Potential Problem: A problem only arises if you used

different attributes for the elements of the array.

Possible Solution: Change the properties for the first

element of the array to the least restrictive values

and add logic in a validatorFunction to verify that

each element of the array meets the necessary

criteria. Also notify your end users of any differences

in the appearance of the form at runtime.

The same problem listed under the Migrating with the

associated part column can occur. You can use the same

solution.

80 Rational Software Development Platform: VisualAge Generator to EGL Migration Guide

Unnamed map variable fields

VisualAge Generator: VisualAge Generator permits, but does not recommend,

unnamed variable fields on a map. At generation time, unnamed variable fields are

converted into constants. Programs and functions can never reference the unnamed

variable field.

EGL: EGL does not permit unnamed variable fields on a form.

Associated part needed for migration: Not applicable.

 Table 29. Unnamed map variable fields

Migrating with the associated part Migrating without the associated part

For any unnamed variable fields on the map, the

migration tool checks to see if any of the following

are specified:

v Initial value

v Protect = yes

v Cursor = yes

v Outlining other than ″No outlining″

v Highlighting other than ″No highlighting″

If any of the above are specified, the migration tool

creates a constant field with the corresponding EGL

properties and issues a warning message.

The migration tool does the same thing as mentioned in the

Migrating with the associated part column.

If none of the properties (or only default values) are

specified for the unnamed variable field, the

migration tool does the following:

v Does not create a constant field on the form.

v Issues a warning message.

The migration tool does the same thing as mentioned in the

Migrating with the associated part column.

Potential Problems: None. You could not reference

the field in VisualAge Generator.

Potential Problems: None.

Unprotected map constants

VisualAge Generator: VisualAge Generator supports the use of unprotected

constants on a map. At test and generation time, unprotected constants are treated

as though the protection is set to autoskip.

EGL: EGL does not support the use of unprotected constants on a form. For

constants on text forms, EGL supports both protect=yes and protect=skip. For print

forms, EGL does not support the protect property.

Associated part needed for migration: Not applicable.

Chapter 3. Handling ambiguous situations 81

Table 30. Unprotected map constants

Migrating with the associated part Migrating without the associated part

When migrating a form, for an unprotected constant

field, the migration tool does the following:

v If the form is a text form, the migration tool sets

the EGL protect property to skip and issues an

error message.

v If the form is a print form, the migration tool

omits the protect property and does not issue a

message. The protect property is not used in EGL

print forms.

The migration tool does the same thing as mentioned in the

Migrating with the associated part column.

Potential Problem: None. Potential Problem: None.

Fields at row=0, column=0

VisualAge Generator: VisualAge Generator 4.5 tolerates fields positioned at row=0,

column=0 from older releases of Cross System Product or VisualAge Generator.

However, VisualAge Generator 4.5 does not provide a way to create fields at this

position. You cannot set attribute information for fields positioned at row=0,

column=0.

EGL: EGL does not support fields positioned at row=0, column=0. Every field

must include an attribute byte.

Associated part needed for migration: Not applicable.

 Table 31. Fields at row=0, column=0

Migrating with the associated part Migrating without the associated part

When migrating a form, if a field is positioned at

row=0, column=0, the migration tool does the

following:

v If the field is a constant field and the first

character of the value is blank, the migration tool

does the following:

– Removes the first character from the value and

reduces the field length by 1.

– Sets the position property to [1,1].

– Includes default presentation properties for the

field.

– Issues a warning message.

v If the field is a constant field and the first

character of the value is not blank OR if the field

is a variable field, the migration tool does the

following:

– Does not change the value or the field length.

– Sets the position property to [0,0].

– Includes default presentation properties for the

fields.

– Issues an error message.

The migration tool does the same thing as mentioned in the

Migrating with the associated part column.

82 Rational Software Development Platform: VisualAge Generator to EGL Migration Guide

Table 31. Fields at row=0, column=0 (continued)

Migrating with the associated part Migrating without the associated part

Potential Problem 1: If the field cannot be changed

and is at position=[0,0], there will be an error in the

Problems view.

Solution 1: Modify the form and change the position

of the field. You might need to move other fields or

reposition constants to make room for the attribute

byte for the field. Also review the default

presentation properties to ensure that the correct

color, highlighting, and so on are used.

Potential Problem 2: If a constant field is changed to

position=[1,1], there might be a different runtime

appearance due to the default presentation

properties.

Solution 2: Review the migration warning messages

and be sure to test any forms where the migration

tool adjusted the position of a field.

Potential Problem: The same problems listed under the

Migrating with the associated part column can occur. You can

use the same solutions.

Handling ambiguous situations for programs

Program names and reserved words

VisualAge Generator: VisualAge Generator does not have reserved words. The #

and @ symbols are not valid in VAGen program names.

EGL: EGL has reserved words. In addition, EGL does not permit the # or @ symbol

as the first character of a part name. A program name cannot be a reserved word.

Associated part needed for migration: Not applicable.

 Table 32. Program names and reserved words

Migrating with the associated part Migrating without the associated part

The migration tool does not rename the program for

you. The migration tool used in Stage 1 of migration

issues an error message if the program name matches

the reserved word list. If you do not change the

program name, the migration tool used in Stage 2 of

migration also issues an error message.

The migration tool does the same as mentioned in the

Migrating with the associated part column.

Chapter 3. Handling ambiguous situations 83

Table 32. Program names and reserved words (continued)

Migrating with the associated part Migrating without the associated part

Potential Problem: A problem only arises if a program

name matches the reserved word list. EGL validation

results in a message in the Problems view.

Solution: Rename the program. You can do this either

in VisualAge Generator or in EGL after you migrate. If

you rename the program in EGL, you must change the

name of the program and all references to it, including

references on call, transfer, and show statements and

references in linkage option parts. Also change the

names of any bind control or link edit parts that

correspond to this program. If you want to keep the

original program name as the name for the generated

program, set the alias property to the original program

name. If you do not specify the alias property, be sure to

change any non-EGL references to the program name,

including CICS program definitions.

The same problem listed under the Migrating with the

associated part column can occur. You can use the same

solution.

Implicit data items in programs

VisualAge Generator: VisualAge Generator permits, but does not recommend, the

use of implicit data items (items that are not explicitly defined in a record, map,

table, called parameter list, function parameter list, or function local storage).

EGL: EGL does not permit implicit data items.

Associated part needed for migration: Not applicable.

 Table 33. Implicit data items in programs

Migrating with the associated part Migrating without the associated part

The migration tool does not create definitions for

implicit items for you. The migration tool used in

Stage 2 of migration issues a warning message if the

program allows implicit items.

The migration tool does the same thing as mentioned in

the Migrating with the associated part column.

Potential Problem: A problem only arises if the

program actually uses implicit items. Review the ″TO

DO″ list log for any programs that allow implicit

items. If the program actually used implicits there will

be errors in the Problems view.

Solution: You can add a definition for the implicit item

to the program either in VisualAge Generator or in

EGL. VAGen validation shows the definition that is

needed for the implicit item.

The same problem listed under the Migrating with the

associated part column can occur. You can use the same

solution.

Associated program parts

VisualAge Generator: The program’s associates can be in multiple projects and

packages for VisualAge Java or in multiple configuration maps and applications

for VisualAge Smalltalk.

EGL: The program’s associates can be in multiple projects, folders, packages, and

files.

Associated parts needed for migration: For a program: All associates.

84 Rational Software Development Platform: VisualAge Generator to EGL Migration Guide

Note: See “EGL build path and import statements” on page 35 for additional

information on import statements.

 Table 34. Associated program parts

Migrating with the associated part Migrating without the associated part

The migration tool does the following:

v Includes a package statement to specify the package

in which the EGL file is to be placed.

v Includes import statements in the EGL file for any

packages that contain associates needed by any of

the parts in the current file and which are in a

different package from the current file. The import

statements are only included if you migrate using

Stages 1 through 3.

v For the program the migration tool does the

following:

– Includes a declaration for the program’s primary

working storage record. If there are level 77s in

the VAGen primary working storage record, the

tool also includes a declaration for the new level

77 item record.

– Includes declarations for all records in the

VAGen Tables and Additional Records list,

including the redefines property, if applicable, for

any VAGen redefined records.

– Includes declarations for all I/O records.

– Includes declarations for records used as

parameters on MQ API calls (the records

specified as attributes of an MQ Message record

in VisualAge Generator).

– Includes declarations for UI records that are used

as the First UI Record, in a CONVERSE, or an

XFER statement.

– Includes declarations for DL/I segment records

that the program references in I/O options, either

directly or because they are in the hierarchical

path to the I/O object.

– Includes use declarations for any tables in the

VAGen Tables and Additional Records list.

– Includes a use declaration for a message table if

the table is explicitly referenced in a statement in

the program.

– Includes a use declaration for each map within

the program’s map group that the program

references in a converse, display, or close I/O

option, in an XFER with a map statement, as a

called parameter, or as the First Map of the

program.

– Includes a use declaration for the program’s help

map group.

– Includes a variable declaration for the program’s

PSB.

The migration tool makes use of all program associates that

are available.

Chapter 3. Handling ambiguous situations 85

Table 34. Associated program parts (continued)

Migrating with the associated part Migrating without the associated part

Potential problem: None. Potential Problem 1: A problem only arises if there are

missing parts. If the migration tool detects missing parts, it

issues a warning message that identifies the missing parts.

The migration tool does not make any assumption about

the missing part(s). This can result in a variety of problems

in the migrated program, including the following:

v Missing import statements.

v Missing level 77 record declaration.

v Missing redefines property for VAGen redefined records.

v Missing I/O record declarations.

v Missing declarations for records used as parameters on

MQ API calls.

v Missing UI record declarations.

v Missing DL/I segment record declarations for segments

referenced in SSAs.

v Missing use declaration for a message table if the table is

explicitly referenced in a statement in the program.

v Missing use declaration for maps within the map group.

Except for the missing redefines property, there will be

errors in the Problems view to help you identify the

problem(s). Note: the migration tool does not detect all

missing parts.

Possible Solution 1A: Change your migration set to include

all the parts that are needed to validate the program in

VisualAge Generator. Migrate the program again using the

new migration set so that all the program’s associates are

migrated together.

Possible Solution 1B: Locate the missing parts in EGL and

correct the EGL program.

Potential Problem 2: For missing level 77 items, see “Level

77 items in records” on page 67.

Potential Problem 3: For missing redefined records, see

“Redefined records” on page 66.

Program with EZEDLPCB in called parameter list

VisualAge Generator: VisualAge Generator uses EZEDLPCB[n] to indicate that a

program is to receive a PCB as a parameter. n must be a numeric literal. The value

of n must be 0 (for the I/O PCB) or a number that corresponds to one of the PCBs

defined in the PSB part for the program.

EGL: EGL uses a variable name with a type definition of xxxx_PCBRecord to

indicate that a program is to receive a PCB as a parameter. xxxx must be IO, ALT,

DB, or GSAM based on the type of the PCB. EGL also requires the pcbParms

property to provide the mapping of the PCB variable name to its corresponding

position in the program’s PSB record.

Associated part needed for migration: The PSB part.

86 Rational Software Development Platform: VisualAge Generator to EGL Migration Guide

Table 35. Program with EZEDLPCB in called parameter list

Migrating with the associated part Migrating without the associated part

When migrating the program, if the program specifies

EZEDLPCB[n] as a parameter and the PSB part is

available, the migration tool does the following:

v Includes the variable pcbn as a parameter and

specifies the type definition based on the

corresponding PCB in the PSB as follows:

– The migration tool sets the type definition of

EZEDLPCB[0] to IO_PCBRecord.

– If n corresponds to a PCB in the PSB part, the tool

sets the type definition based on the PCB type in

the PSB.

– If n is greater than the number of PCBs in the

PSB part, the tool issues a message and sets the

type definition to EZE_UNKNOWN_PCB_TYPE.

v Lists all the pcbn variables in their corresponding

place in the pcbParms property. The I/O PCB is

pcb0 and, if specified as a parameter, is listed in the

first position of the pcbParms property. The

remaining pcbn variables are listed at position n+1

in the pcbParms list.

When migrating the program, if the program specifies

EZEDLPCB[n] as a parameter and the PSB part is not

available, the migration issues a message and does the

following:

v Includes the variable pcbn as a parameter and specifies

the type definition as follows:

– The migration tool sets the type definition of

EZEDLPCB[0] to IO_PCBRecord.

– The migration tool issues a message and sets the type

definition of all other pcbn variables to

EZE_UNKNOWN_PCB_TYPE.

v Issues a message and sets the pcbParms property to

EZE_UNKOWN_PCB_MAPPING.

Potential Problem: A problem only arises if the PSB

part contains fewer PCBs than the highest value of n

for an EZEDLPCB[n] parameter.

Solution: The program is invalid in VisualAge

Generator. Review your program logic to determine

whether to change the program parameter list or the

program’s PSB part.

Potential Problem 1: The correct PCB type definitions and

pcbParms property must be provided.

Solution: Locate the program’s PSB part. Edit the program

and correct the PCB type definitions. Also provide the

correct mapping of the pcbn variables for the pcbParms

property.

Intermediate variables required for migration

VisualAge Generator: Some VAGen statements require intermediate variables to

provide the equivalent support in EGL.

EGL: EGL provides system library functions that provide some information

required for VAGen migration. This support is only available in VisualAge

Generator Compatibility mode.

Associated part needed for migration: Not applicable.

Chapter 3. Handling ambiguous situations 87

Table 36. Intermediate variables required for migration

Migrating with the associated part Migrating without the associated part

When migrating any program, the migration tool

always includes declarations for the following:

v custPrefixEZEREPLY

v custPrefixEZE_ITEMLEN

v custPrefixEZE_WAIT_TIME

If the VAGen Migration Preference Do not initialize old

EZESYS values is not selected, the migration tool also

does the following:

v Includes a declaration for custPrefixEZESYS.

v Includes an initialization statement to set the value

of custPrefixEZESYS to the old VAGen EZESYS

value.

custPrefix is the same prefix that is used for changing

part names that conflict with reserved words. Use the

VAGen Migration Preferences to set its value.

The migration tool does the same things mentioned in the

Migrating with the associated part column.

The 4 variables are used for migrating the following:

v VAGen service routines if the (REPLY option is not

specified. In this situation, the current value of

handleSysLibraryErrors must be saved and

restored.

v The TEST nnn, +nnn, or -nnn statement which has

no direct equivalent in EGL. An EGL system library

function is used to determine the length of the data

the user entered.

v The EZEWAIT function. In this situation, the

migration tool adds logic to convert the time to

seconds.

v References to EZESYS in statements other than IF,

WHILE, and TEST where the old VAGen value is

required.

The migration tool does the same things mentioned in the

Migrating with the associated part column.

Potential Problems: A problem only arises if you

select the VAGen Migration Preference Do not initialize

old EZESYS values during migration and you use

EZESYS in statements other than IF, WHILE, or TEST.

In this situation the migration tool uses

custPrefixEZESYS in the statement, but programs do

not have a declaration and initialization statement for

custPrefixEZESYS. There will be an error in the

Problems view.

Potential Solution 1: Change your EGL logic to use

the new values for sysVar.systemType.

Potential Solution 2: Add a declaration and an

initialization statement for custPrefixEZESYS to any

program that needs to use the old VAGen value for

EZESYS.

The same problem listed under Migrating with the associated

part column can occur. You can use the same solutions.

88 Rational Software Development Platform: VisualAge Generator to EGL Migration Guide

Handling ambiguous situations for functions, including I/O statements

DISPLAY statement for maps

VisualAge Generator: DISPLAY is used for both display maps and printer maps.

EGL: Two separate statements are used:

v display form is used for text forms.

v print form is used for print forms.

In VisualAge Generator Compatibility mode, display form is accepted if the form is

a print form.

Associated part needed for migration: The map is needed to determine the device

type. The first map with this map name in any available map group is the map

that the migration tool uses. When migrating in program context, the migration

tool only looks at the program’s main map group.

 Table 37. Display statement for maps

Migrating with the associated part Migrating without the associated part

Based on the first migration of this function, if a map

with this name is available, the migration tool converts to

the following:

v display textForm if the map is a display map

v print printForm if the map is a printer map

If a map with this name is not available, the migration

tool does the following:

v Converts to display form

v Issues a warning message that the map type could not

be determined

Chapter 3. Handling ambiguous situations 89

Table 37. Display statement for maps (continued)

Migrating with the associated part Migrating without the associated part

Potential Problem 1: The first program that migrated

used a print form so the migration tool migrated to the

print statement. Another program uses the same function,

but with a text form.

Solution 1: Use VisualAge Generator Compatibility

mode. Edit the function and change the print statement to

a display statement.

Potential Problem 2: A problem arises if you want to

eliminate the use of VisualAge Generator Compatibility

mode and two programs use the function -- one with a

text form and one with a print form.

Possible Solution 2A: If a specific target environment

always uses display maps and other environments always

use print maps, you could change the EGL function to

something similar to the following:

if (sysVar.systemType is zoscics)

 DISPLAY_FUNCTION();

else

 PRINT_FUNCTION();

end

where DISPLAY_FUNCTION and PRINT_FUNCTION

use the display and print statements, respectively.

Possible Solution 2B: Assuming the function migrated to

a display statement, change the function from the

following:

 before-logic

 display textForm;

 after-logic

to the following:

 before-logic-function();

 display textForm;

 after-logic-function();

Putting the before-logic and after-logic into separate

functions enables you to keep most of the logic in

common functions. Then you can make a copy of the

modified display function and change it to use print map,

but still use the common before-logic-function and

after-logic-function. Disadvantage: This has the potential

to ripple back into functions that use the original

DISPLAY function.

Potential Problem: The same potential problems and

possible solutions as listed in the Migrating with the

associated part column apply.

I/O error routine

VisualAge Generator: A function that does file or database I/O can specify an I/O

error routine. The I/O error routine can be a main function or a non-main

function; the syntax is the same. VisualAge Generator determines at test or

generation time whether the I/O error routine is a main function or non-main

function for the program. When a main function is used as the I/O error routine,

VisualAge Generator pops the function stack back to the top of the stack, starts the

stack over again with only the (I/O error routine) main function on the stack, and

then invokes the main function. When a non-main function is used as the I/O

90 Rational Software Development Platform: VisualAge Generator to EGL Migration Guide

error routine, VisualAge Generator adds the non-main function to the current

function stack and then invokes the function.

EGL: The try block and onException statement are used for error handling. The

syntax for an onException statement supports the following:

v Transferring back to a main function using exit stack functionName;

v Invoking a non-main function using nonmainfunctionName();

v Invoking a main function with mainfunctionName(); This form is not supported

by VisualAge Generator. EGL adds the main function to the current function

stack and then invokes the main function.

Associated part needed for migration: The program with its list of main functions.

 Table 38. File and database I/O error routines

Migrating with the associated part Migrating without the associated part

Based on the first migration of this function, if there is a

program available, the migration tool does the following:

v Changes an I/O error routine that specifies a program

main function to:

try

 I/O-Statement;

 onException exit stack functionName;

end

v Changes an I/O error routine that specifies a non-main

function to:

try

 I/O-Statement;

 onException functionName();

end

If there is no program available, the migration tool does

the following:

v Assumes that the function named in an I/O error

routine is a non-main function and changes it to the

following:

try

 I/O-Statement;

 onException functionName();

end

v Does not issue a warning message due to the high

volume of messages that could be issued and the

likelihood that messages will be ignored or hide other

serious error messages.

Potential Problem: A problem arises if this function is

used in a program where the I/O error routine differs in

its use as a main or non-main function from the original

program.

Note: There will not be a message in the Problems view.

Generation will not detect an error. However, the program

will not run the same as in VisualAge Generator. Instead of

popping the stack as in VisualAge Generator, EGL will

add the main function to the stack.

Possible Solution: If this situation arises, create a new

version of this I/O function with the proper syntax for

transferring to a main function. Disadvantage: This

technique has the potential to ripple back into other

functions that invoke the I/O function.

Potential Problem: A problem arises if this function is

used in a program where the I/O error routine is a main

function.

Note: There will not be a message in the Problems view.

Generation will not detect an error. However, the program

will not run the same as in VisualAge Generator. Instead of

popping the stack as in VisualAge Generator, EGL will

add the main function to the stack.

Possible Solution: The same solution listed for

Migrating with the associated part applies.

SQL I/O statements

VisualAge Generator: For SQL I/O, test and generation expand a single I/O

option into multiple SQL statements as needed based on the record definition and

the use of Execution Time Statement Build. Test and generation always create the

tables clause for the I/O statement from the SQL record definition.

Chapter 3. Handling ambiguous situations 91

EGL: SQL statements must be explicitly specified in the EGL program. If an SQL

statement is modified, all SQL clauses except the into clause are required.

Execution Time Statement Build is replaced by the prepare statement followed by

an open, get, or execute statement.

Associated part needed for migration: The SQL record and the record specified as

the alternate specification record, if any.

 Table 39. SQL I/O statements

Migrating with the associated part Migrating without the associated part

Based on the first migration of this function, if the SQL

record and its alternate specification record are

available, the migration tool creates the corresponding

EGL statement(s) based on the record definition, the

SQL statement within the function, and the use of

Execution Time Statement Build. If the SQL statement

in the function was modified, the migration tool does

the following:

v Builds the EGL SQL statement with all clauses,

including the into clause.

v Creates any required tables clause from the table

names in the SQL record or, if applicable, its

alternate specification record.

v Creates any other missing clauses that are required

for this SQL I/O statement based on the record

definition for the I/O object, or if applicable, the

record definition for the I/O object’s alternate

specification record.

v Converts any !itemColumnNames from the item

name to the corresponding SQL column name.

v Does not review the SQL statement for the SQL

reserved words that require special treatment. See

“SQL reserved words requiring special treatment”

on page 225 for the list of reserved words and the

changes you must make to your SQL statement if

you use one of these reserved words as a table or

column name.

Note:

v See “SQL I/O and missing required SQL clauses” on

page 93 for details on problems related to missing

SQL clauses.

v See “SQL I/O and !itemColumnName” on page 95

for details on problems related to using

!itemColumnNames.

If the SQL record or its alternate specification record are

not available, the migration tool only has the SQL

statement modifications and Execution Time Statement

Build information to use in creating the EGL SQL

statements. Because the migration tool does not have a

record definition available, the migration tool does the

following:

v Builds the EGL SQL statement with all clauses, including

the into clause.

v Uses EZE_UNKNOWN_SQLTABLE as the table name

and T1 as the table label in any tables clause.

v Uses EZE_UNKNOWN_SQL_clausename for any missing

SQL clauses, where clausename is the External Source

Format key word for the missing SQL clause (for

example, SELECT or VALUES).

v Uses !itemColumnNames for any column name variables.

v Issues an error message that the function needs to be

reviewed.

v Does not review the SQL statement for the SQL reserved

words that require special treatment. See “SQL reserved

words requiring special treatment” on page 225 for the

list of reserved words and the changes you must make to

your SQL statement if you use one of these reserved

words as a table or column name.

Note:

v See “SQL I/O and missing required SQL clauses” on

page 93 for details on problems related to missing SQL

clauses.

v See “SQL I/O and !itemColumnName” on page 95 for

details on problems related to using !itemColumnNames.

92 Rational Software Development Platform: VisualAge Generator to EGL Migration Guide

Table 39. SQL I/O statements (continued)

Migrating with the associated part Migrating without the associated part

Potential Problem 1: A problem only arises if there are

two records with the same name that have different

SQL table names or table labels. This might occur in

different subsystems or when generating using

different tables for test and production.

Possible Solution 1A: If the problem is due to

changing the qualification for a table name between

test and production, change to use unqualified table

names and specify the qualification information at

BIND time.

Possible Solution 1B: If the problem is due to

different table names in different subsystems, make a

copy of the record and rename it. Then make a copy of

the I/O function to use the new record name. Correct

the new I/O function to have the proper tables clause.

Disadvantage: This has the potential to ripple back

into functions that use this I/O function.

Possible Solution 1C: If the problem is due to

different table names in different subsystems, change

the record to use the tableNameVariables property and

modify all functions that do I/O for this record to set

the table name variable before invoking the I/O

function -- possibly in each program’s main function.

Alternatively, make the change to table name host

variables in VisualAge Generator and migrate the

program, record and function again. Disadvantage:

There are potential performance implications because

this changes from static to dynamic SQL.

Potential Problem 2: A problem arises if any SQL

table name or column name is one of the SQL reserved

words that requires special treatment. The migration

tool does not enclose these SQL reserved words in

double-quotes. There will be an error in the Problems

view.

Solution 2A: Edit the function and enclose the SQL

table name or column name in double quotes. See

“SQL reserved words requiring special treatment” on

page 225 for the list of SQL reserved words and an

example of the required syntax.

Potential Problem 1: A problem arises for any modified

SQL statement or any SQL statement that uses Execution

Time Statement Build. Depending on whether the record is

missing and which specific SQL clauses are missing from

the SQL statement, there might be errors in the Problems

view.

Solution: Review the migration log for any messages

related to missing SQL clauses or table names.

Alternatively, search the workspace for any occurrences of

EZE_UNKNOWN_SQL. Determine the proper tables clause

based on the record definition. See “SQL I/O and missing

required SQL clauses” on page 93 for information about

recreating the SQL clause in EGL. See “SQL I/O and

!itemColumnName” on page 95 for information about

correcting any !itemColumnName variables.

Other potential problems: The same potential problems

and solutions as shown for Migrating with the associated part

apply.

SQL I/O and missing required SQL clauses

VisualAge Generator: VisualAge Generator 4.5 stores all the SQL clauses if you

modified any SQL clause. However, some earlier versions of Cross System Product

and VisualAge Generator only stored the clause that you modified. If a function

from an earlier version was never modified in VisualAge Generator 4.5, then some

of the required SQL clauses might be missing.

EGL: If any SQL clause is modified, all SQL clauses for the SQL statement must be

specified.

Chapter 3. Handling ambiguous situations 93

Associated part needed for migration: The SQL record and the record specified as

the alternate specification record, if any.

 Table 40. SQL I/O and missing SQL clauses

Migrating with the associated part Migrating without the associated part

If the SQL record and its alternate specification record

are available, and if any SQL clause is present, but

some clauses are missing, the migration tool creates

the missing clauses as shown in the next rows of this

table. Based on the first migration of this function, the

migration tool uses the SQL record and its alternate

specification record, if any, to create the missing

clauses.

If the SQL record or its alternate specification record are not

available, and if any SQL clause is present, but some clauses

are missing, the migration tool creates the missing clauses as

shown in the next rows of this table. Based on the first

migration of this function, the migration tool creates

intentionally invalid EGL syntax if the SQL record or its

alternate specification record is not available.

Missing tables clause: The migration tool creates the

tables clause by listing all the SQL tables and table

labels from the record. The migration tool includes

both SQL table names and table name host variables

in the same order that they appear in the VAGen

record definition.

Missing tables clause: The migration tool sets the SQL table

name to EZE_UNKNOWN_SQLTABLE, sets the table label

to T1 and issues an error message.

Missing SELECT clause: The migration tool creates a

select clause by listing all the SQL column names

from the record in the same order that the items

appear in the record.

Missing SELECT clause: The migration tool sets the SQL

column names for the select clause to

EZE_UNKNOWN_SQL_SELECT and issues an error

message.

Missing INTO clause: The migration tool creates the

into clause by listing all the item names from the

record in the same order that the items appear in the

record.

Missing INTO clause: The migration tool sets the item

names for the into clause to EZE_UNKNOWN_SQL_INTO

and issues an error message.

Missing INSERTCOLNAME clause: The migration

tool creates the list of column names to be inserted

for a VAGen ADD function by listing the SQL column

names from the record in the same order that the

items appear in the record. The migration tool omits

the SQL column name for any item that is identified

as read only.

Missing INSERTCOLNAME clause: The migration tool sets

the SQL column names for the list to

EZE_UNKNOWN_SQL_INSERTCOLNAME and issues a

error message.

Missing VALUES clause: The migration tool creates

the values clause for a VAGen ADD function by

listing the item names from the record in the same

order that the items appear in the record. The

migration tool omits the item name for any item that

is identified as read only.

Missing VALUES clause: The migration tool sets the item

names for the values clause to

EZE_UNKNOWN_SQL_VALUES and issues an error

message.

Missing FORUPDATEOF clause: The migration tool

creates the for update of clause by listing the SQL

column names from the record in the same order that

the items appear in the record. The migration tool

omits the SQL column name for any item that is

included in the EGL keyItems property or any item

that is identified as read only.

Missing FORUPDATEOF clause: The migration tool sets

the SQL column names for the for update of clause to

EZE_UNKNOWN_SQL_FORUPDATEOF and issues an error

message.

Missing SET clause: The SET clause is not required.

If the SET clause is missing from a REPLACE I/O

statement, the statement is a default SQL replace. The

migration tool never creates a set clause.

Missing SET clause: The migration tool does the same thing

as mentioned in the Migrating with the associated part column.

Missing WHERE clause: The WHERE clause is not

required. The migration tool never creates a where

clause.

Missing WHERE clause: The migration tool does the same

thing as mentioned in the Migrating with the associated part

column.

94 Rational Software Development Platform: VisualAge Generator to EGL Migration Guide

Table 40. SQL I/O and missing SQL clauses (continued)

Migrating with the associated part Migrating without the associated part

Missing ORDERBY clause: The ORDERBY clause is

not required. The migration tool never creates an

order by clause.

Missing ORDERBY clause: The migration tool does the

same thing as mentioned in the Migrating with the associated

part column.

Potential Problem: A problem only arises if there are

two records with the same name (generally in

different subsystems) that have different item names

or SQL column names.

Possible Solution: Make a copy of the function for

use in the second subsystem and modify the new

function to use the correct item names and SQL

column names. Disadvantage: This has the potential

to ripple back into functions that use this I/O

function.

Potential Problem 1: A problem arises for any modified

SQL statement or any SQL statement that uses Execution

Time Statement Build.

Solution 1A: Review the list of error messages for any

messages related to missing SQL clauses. Modify the SQL

I/O function to include the missing clauses. The information

you need to build the missing clause is in the corresponding

row in the Migrating with the associated part column.

Solution 1B: Edit the function in VisualAge Generator and

use the SQL Editor to make a trivial change such as adding

a blank at the end of a line. Save the SQL clauses and then

migrate the function again. Be sure to include the record

definition so that the migration tool can include the SQL

table information in the EGL I/O statement.

Potential Problem 2: The same potential problem and

solution as shown for Migrating with the associated part apply.

SQL I/O and !itemColumnName

VisualAge Generator: For SQL I/O, VisualAge Generator permits the use of

!itemColumnName in some clauses of the SQL statements. Test and generation

determine the SQL column name that corresponds to the item name in the SQL

row record.

EGL: The use of !itemColumnName is not supported.

Associated part needed for migration: The SQL record and the record specified as

the alternate specification record, if any.

 Table 41. SQL I/O and !itemColumnName

Migrating with the associated part Migrating without the associated part

Based on the first migration of this function, if the SQL

record and its alternate specification record are

available, the migration tool converts any

!itemColumnNames to the corresponding SQL column

name based on the SQL record or, if applicable, its

alternate specification record.

If the SQL record or its alternate specification record are

not available, the migration tool does the following:

v Uses !itemColumnNames for any column name

variables.

v Issues an error message that the function needs to be

reviewed.

Potential Problem: A problem only arises if there are

two records with the same name (generally in different

subsystems) that have different SQL column names

corresponding to an !itemColumnName.

Possible Solution: Make a copy of the function for use

in the second subsystem and modify the new function

to use the correct SQL column names. Disadvantage:

This has the potential to ripple back into functions that

use this I/O function.

Potential Problem 1: A problem arises for any modified

SQL statement or any SQL statement that uses Execution

Time Statement Build.

Solution: Review the list of error messages for any

messages related to !itemColumnNames. Modify the SQL

I/O function to include the correct column names based on

the SQL row record.

Potential Problem 2: The same potential problem and

solution as shown for Migrating with the associated part

apply.

Chapter 3. Handling ambiguous situations 95

SQL I/O with multiple updates

VisualAge Generator: For SQL I/O, if there are multiple UPDATE or SETUPD

functions in a program, each SQL REPLACE function must specify the name of its

corresponding UPDATE or SETUPD function. This is not required for non-SQL

I/O. SETUPD is not supported for non-SQL I/O.

EGL: For SQL I/O, if there are multiple get forUpdate or open forUpdate

statements, each SQL replace statement must specify the name of its corresponding

get or open statement. Each get and open statement specifies a resultSetID. The

replace statement specifies the resultSetID for the corresponding get or open

statement. The resultSetID is not applicable for non-SQL I/O.

Associated part needed for migration: The record that is the I/O object.

 Table 42. SQL I/O with multiple updates

Migrating with the associated part Migrating without the associated part

Based on the first migration of this function, if the

record is available, the migration tool creates the

corresponding EGL statement(s) based on the record

type.

For SQL, the migration tool does the following:

v Always includes a resultSetID when migrating any

UPDATE or SETUPD function. The resultSetID is

created using the function name and a

customer-specified suffix.

v Includes the resultSetID when migrating any

REPLACE function that specified a corresponding

UPDATE or SETUPD function name. The resultSeID

is created using the corresponding UPDATE or

SETUPD function name and a customer-specified

suffix.

For non-SQL, the migration tool always omits the

resultSetID when migrating an UPDATE or REPLACE

function. There are no SETUPD functions for non-SQL

I/O.

When migrating an UPDATE function, if the record is not

available, the migration tool does the following:

v Attempts to determine if this function is for SQL I/O by

checking if the function also has SQL clauses or any

SQL-specific information such as Execution Time

Statement Build, single row select, or cursor with hold.

v If the migration tool can determine that this UPDATE

statement is for an SQL record, the migration tool

includes the resultSetID in the get statement.

v Otherwise, the migration tool does not include the

resultSetID. The migration tool issues a warning

message.

When migrating a SETUPD function, the migration tool

always includes the resultSetID because SETUPD is only

valid for SQL.

When migrating a REPLACE function, the migration tool

includes the resultSetID if the function specifies a

corresponding UPDATE or SETUPD function name.

Potential Problem: None. Potential Problem: A problem only arises if an unmodified

UPDATE function really does refer to an SQL record and is

used in a program where there are multiple get or open

forUpdate statements. In this case, each replace statement

will include a resultSetID, but the get statement that was

migrated for the VAGen UPDATE statement will not

include the resultSetID. Generation for the program will

fail.

Solution: Modify the function to include the resultSetID

for the get statement.

DL/I I/O and comparison value items

VisualAge Generator: For DL/I I/O, if the comparison value item is not qualified,

VisualAge Generator gives precedence to the record that corresponds to the

segment specified for the current Segment Search Argument (SSA). If the

comparison value item is not found in that record, VisualAge Generator looks next

96 Rational Software Development Platform: VisualAge Generator to EGL Migration Guide

in working storage records and then in other DL/I segment records such as the

I/O object. Items in the function’s local storage or parameter list are ignored.

Records in the function’s local storage or parameter list are considered, but only

for items that are uniquely named for the program.

EGL: For DL/I I/O, if the comparison value item is not qualified, EGL follows the

normal EGL qualification rules. EGL looks first at items in the function’s local

storage or parameter list; then fields in records in the function’s local storage,

parameter list, or I/O object; and finally all variables in the program.

Associated part needed for migration: DL/I segment record and the record

specified as the alternate specification record, if any.

 Table 43. DL/I I/O and comparison value items

Migrating with the associated part Migrating without the associated part

Based on the first migration of this function, if the

comparison value item is not qualified, the migration

tool looks for the DL/I segment record associated with

the current SSA. If the DL/I segment record and its

alternate specification record are available, the

migration tool checks the record for the comparison

value item as follows:

v If the item is in the record, the migration tool

qualifies the comparison value item with the DL/I

segment record name.

v If the item is not in the record, the migration tool

does the following:

– Uses EZE_UNKNOWN_QUALIFIER as the record

name.

– Issues a message indicating that it cannot

determine the qualification for the item.

If the DL/I segment record or its alternate specification

record are not available, the migration tool does the

following:

v Uses EZE_UNKNOWN_QUALIFIER as the record name.

v Issues a message indicating that it cannot determine the

qualification for the item.

Potential Problem: A problem only arises if the

comparison value item is not qualified and is not in

the associated DL/I segment record or its alternate

specification record.

Possible Solution: Review your program logic to

determine the correct qualification to use. You can also

review the generated COBOL source code from the last

time you generated the program. In VisualAge

Generator, at some points in time, the rules for the

qualification of the comparison value item varied. Due

to these variations, do not regenerate the program

using your current release of VisualAge Generator

unless you are certain that the release has not changed

since the last time you generated the program.

Potential Problem 1: A problem arises for any unqualified

comparison value item.

Solution: Modify the DL/I I/O function to include the

correct qualification for the comparison value item. Be sure

to check the DL/I segment record associated with the

qualification statement first.

Potential Problem 2: The same potential problem and

solution as shown for Migrating with the associated part

apply.

Handling ambiguous situations for other statements

Implicit data items in statements

VisualAge Generator: VisualAge Generator permits, but does not recommend, the

use of implicit data items (items that are not explicitly defined in a record, map,

table, called parameter list, function parameter list, or function local storage).

EGL: EGL does not permit implicit items.

Chapter 3. Handling ambiguous situations 97

Associated part needed for migration: Not applicable.

 Table 44. Implicit data items in statements

Migrating with the associated part Migrating without the associated part

See “Implicit data items in programs” on page 84 See “Implicit data items in programs” on page 84

Level 77 items in statements

VisualAge Generator: Only working storage records can contain level 77 items. A

program can reference level 77 items only in the primary working storage record.

EGL: Level 77 items are not permitted.

Associated part needed for migration: When migrating a function, you need the

working storage record.

 Table 45. Level 77 items in statements

Migrating with the associated part Migrating without the associated part

See “Level 77 items in records” on page 67 See “Level 77 items in records” on page 67

Table references in statements

VisualAge Generator: If a function references a table, the table is not considered to

be an associate of the function.

EGL: If a function references a DataTable, the file containing the function must

include an import statement for the DataTable.

Associated part needed for migration: Table.

 Table 46. Table references in statements

Migrating with the associated part Migrating without the associated part

If the table is available, the migration tool

adds the table as an associate of the function

during Stage 2 migration. Stage 3 migration

then adds the corresponding import

statement to the file containing the function.

If the table is not available, the migration

tool does not add the table as an associate of

the function. The import statement is not

added during Stage 3.

Potential Problem: None. Potential Problem: A problem arises if the

import statement is not present due to the

need to import a part in the same package

as the table, either for the function or for

some other part in the same file as the

function.

Solution: Add the import statement to the

file containing the function.

Assignment statements

VisualAge Generator: Assignment statements are permitted for records and maps

and result in a ″move corresponding.″ MOVE statements are permitted for items.

EGL: Assignment statements can only be used for data items or for a byte-by-byte

move of a record. Assignment statements cannot be used for maps. The move

98 Rational Software Development Platform: VisualAge Generator to EGL Migration Guide

byName statement is required for a move corresponding of records and maps. The

move statement without a modifier can be used for items, but assignment

statements are preferred.

Associated part needed for migration: Not applicable.

 Table 47. Assignment statements

Migrating with the associated part Migrating without the associated part

To preserve as much common code as possible, the

migration tool does the following if both the source

and target of an assignment or move statement are

unqualified, unsubscripted names:

v Checks the function’s parameter list, local storage,

and I/O object to try to determine whether the

source or target of an assignment or MOVE

statement is an item, record, or map. If the

migration tool can make the determination, it

migrates as follows:

– To an assignment statement if the source or target

is an item.

– To a move byName statement if the source or

target is a record or map.

v If the migration tool cannot determine the part type,

it migrates assignment and MOVE statements to a

move statement without a modifier.

This is handled the same as mentioned in the Migrating

with the associated part column.

Potential Problem: None. Test and generation convert

the move statement without a modifier to a VAGen

MOVE statement. This is an item to item move or a

move byName (move corresponding), depending on

the actual source and target of the move. Any program

can use the function without modifying it.

Potential Problem: None. The same situation mentioned in

the Migrating with the associated part column applies.

FIND statement

VisualAge Generator: The search column in the FIND statement is optional. The

default is the first column of the VAGen table.

EGL: The FIND statement is replaced by an if statement. The search column is

required.

Associated part needed for migration: The VAGen table.

 Table 48. FIND statement

Migrating with the associated part Migrating without the associated part

Based on the first migration of this function, if the

search column is not explicitly specified and the table

is available, the migration tool expands the table to get

the name of search column from the first column of the

table.

If the search column is not explicitly specified and the

table is not available, the migration tool does the

following:

v Sets the search-column to

EZE_UNKNOWN_SEARCH_COLUMN

v Issues an error message that the function will need to be

modified with the proper column name.

Chapter 3. Handling ambiguous situations 99

Table 48. FIND statement (continued)

Migrating with the associated part Migrating without the associated part

Potential Problem: A problem only arises if two

dataTables, probably in different subsystems, have the

same dataTable name, but different search column

names.

Solution: For the second subsystem, add a field as a

substructure for the first column in the dataTable. The

name of this new field should be the same as the

search column in the first subsystem. This technique

enables you to share the common function without

changing any code in the second subsystem.

Potential Problem 1: The search column name must be

provided. There will be an error in the Problems view.

Solution: Edit the function and specify the correct column

name for the dataTable.

Potential Problem 2: The same potential problem and

solution as shown for Migrating with the associated part

apply.

RETR statement

VisualAge Generator: The search and return columns for the RETR statement are

optional. The search column defaults to the first column of the VAGen table. The

return column defaults to the second column.

EGL: The RETR statement is replaced by an if statement. The search and return

columns are required.

Associated part needed for migration: The VAGen table.

 Table 49. RETR statement

Migrating with the associated part Migrating without the associated part

Based on the first migration of this function, if the

search or return column is not explicitly specified and

the table is available, the migration tool expands the

table to get the following:

v The name of search column from the first column of

the table.

v The name of the return column from the second

column of the table.

If the search column or return column is not explicitly

specified and the table is not available, the migration tool

does the following:

v Sets the search column to

EZE_UNKNOWN_SEARCH_COLUMN

v Sets the return column to

EZE_UNKNOWN_RETURN_COLUMN

v Issues an error message that the function will need to be

modified with the proper column names.

Potential Problem: A problem only arises if two

dataTables, probably in different subsystems, have the

same dataTable name, but different search or return

column names.

Solution: For the second subsystem, add a field as a

substructure for the first column in the dataTable. The

name of this new field should be the same as the

search column in the first subsystem. Substructure the

second column of the dataTable with the name of the

return column in the first subsystem. This technique

enables you to share the common function without

changing any code in the second subsystem.

Potential Problem 1: The search and return column names

must be provided. There will be an error in the Problems

view for each missing column.

Solution: Edit the function and specify the correct column

names for the dataTable.

Potential Problem 2: The same potential problem and

solution as shown for Migrating with the associated part

apply.

SET map PAGE statement

VisualAge Generator: SET map PAGE is used for both display and print maps.

EGL: Two separate statements are used. The map name is not specified:

100 Rational Software Development Platform: VisualAge Generator to EGL Migration Guide

v clearScreen() for text (display) forms

v pageEject() for print forms

Associated part needed for migration: The map is needed to determine the device

type. The first map with this map name in any available map group is the map

that the migration tool uses. When migrating in program context, the migration

tool only looks at the program’s main map group.

 Table 50. SET map PAGE statement

Migrating with the associated part Migrating without the associated part

Based on the first migration of this function, if the map

is available, the migration tool converts SET map PAGE

to the following:

v clearScreen() for a text form

v pageEject() for a print form

The migration tool also includes a comment with the

original map name.

If the map is not available, the migration tool does the

following:

v Converts SET map PAGE to EZE_SETPAGE().

v Includes a comment with the original map name.

v Issues an error message that it was unable to determine

the map type.

Potential Problem: Any program that uses a different

map type from what was determined when the

function migrated might behave differently at run time.

This is because clearScreen only applies to text forms

and pageEject only applies to print forms. No error will

appear in the Problems view. Generation will not fail

for the program.

Possible Solution: If a specific target environment does

printing and other environments always use display

maps, change the EGL function to something similar to

the following:

if (sysVar.systemType is zosbatch)

 pageEject();

else

 clearScreen();

end

Similar logic can be used based on transaction code,

user ID, and so on, depending on the specific details of

your system.

Potential Problem 1: If the function containing the

statement is used in a program, EGL validation results in a

message in the Problems view. If the function is not used

in a program, there is no message in the Problems view.

Solution: Edit the function and change EZE_SETPAGE() to

either clearScreen() or pageEject(), depending on the map

type.

Potential Problem 2: The same potential problem and

solution as shown for Migrating with the associated part

apply.

SET mapItem attributes

VisualAge Generator: VisualAge Generator tolerates attributes such as protect,

highlighting, and color for variables and constants on printer maps.

EGL: With the exception of underline, EGL does not support attributes for print

forms.

Associated part needed for migration: Not applicable.

Chapter 3. Handling ambiguous situations 101

Table 51. SET mapItem attributes

Migrating with the associated part Migrating without the associated part

When migrating a printer map, the migration tool

omits attributes that are not supported by EGL for

print forms.

When migrating a function, the migration tool migrates

the SET statement without regard to whether the map

is a display map or printer map.

The migration tool does the same thing as mentioned in

the Migrating with the associated part column.

Potential Problem: There is no problem for a text form.

A problem only arises if the function includes logic to

set attributes such as color, highlight, or protect for a

print form. There will be an error in the Problems view.

Solution: If the function is only used for print forms,

modify the function to remove the set statement. If the

function is used with both text and print forms, make a

copy of the function for use with print forms. Modify

the new function to remove the set statements and use

this new function for any print forms. Disadvantage:

This has the potential to ripple back into functions that

use the function with the set statement.

Potential Problem: The same potential problem and

solution as listed in the Migrating with the associated part

column apply.

Checking for IN literal or scalar

VisualAge Generator: VisualAge Generator supports the IF or WHILE statement

checking for a data item IN a literal or scalar. In this situation, VisualAge

Generator sets the value of EZETST and does a comparison for equality.

EGL: EGL does not support checking a data item for IN a literal or scalar.

Associated part needed for migration: Not applicable.

 Table 52. Checking for IN literal or scalar

Migrating with the associated part Migrating without the associated part

For an IF or WHILE statement that checks a data item

IN a literal, the migration tool does the following to

match the VAGen behavior:

v Adds a statement to initialize sysVar.arrayIndex to 0.

v Changes the if or while statement to compare equal

(For example, if a == ″b″).

v Adds a statement immediately after the if or while to

set sysVar.arrayIndex to 1.

For an IF or WHILE statement that checks a data item

IN another data item, the migration tool does not

attempt to determine if the second data item is an

array or a scalar. The migration tool migrates to an

EGL in comparison. (For example: if a in b).

The migration tool does the same thing as mentioned in

the Migrating with the associated part column.

102 Rational Software Development Platform: VisualAge Generator to EGL Migration Guide

Table 52. Checking for IN literal or scalar (continued)

Migrating with the associated part Migrating without the associated part

Potential Problem: There is no problem if the

comparison is for a literal. A problem only arises if the

second data item is actually a scalar. In this case, there

will be an error in the Problems view.

Solution: Modify the function to initialize

sysVar.arrayIndex to 0 before the if or while statement

and to set sysVar.arrayIndex to 1 immediately after the

if or while statement. Also change the if or while

statement to compare using == rather than in.

Potential Problem: The same potential problem and

solution as listed in the Migrating with the associated part

column apply.

Checking SQL and map items for NULL

VisualAge Generator: IF, WHILE, and TEST support checking either an SQL item

or a map item for NULL.

EGL: SQL items can be checked for null. Map items can be checked for blanks.

Associated part needed for migration: The record or map. If the item is not

qualified, you need the program and all of its associates.

 Table 53. Checking SQL and map items for NULL

Migrating with the associated part Migrating without the associated part

Based on the first migration of this function, if the item

is qualified, the migration tool does the following:

v Checks the qualifier to determine if it is a record or

map.

v Converts to checking for null if the qualifier is an

SQL record.

v Converts to checking for blanks if the qualifier is a

map.

The migration tool tries to determine the type of the item

as follows:

v If the item is qualified and the qualifier is not available,

the migration tool does the following:

– Checks if the qualifier is also the function’s I/O

object. If so, the CONVERSE and DISPLAY I/O

options guarantee the I/O object is a map. The

CLOSE I/O option is valid for either a record or map.

Other I/O options guarantee the I/O object is a

record.

– Also checks the function’s parameter list and local

storage. If the qualifier is found, the qualifier is a

record.

v If the migration tool can determine that the item is in an

SQL record or on a map, the tool migrates to the

following:

– null for an SQL record

– blanks for a map item

v If the migration tool cannot determine that the item is in

an SQL record or on a map, then the tool does the

following:

– Converts to EZE_NULL.

– Issues an error message indicating that this statement

should be reviewed.

Chapter 3. Handling ambiguous situations 103

Table 53. Checking SQL and map items for NULL (continued)

Migrating with the associated part Migrating without the associated part

Based on the first migration of this function, if the item

is not qualified, the migration tool does the following:

v Checks the function’s parameter list to see if the item

is specified there as either an SQLITEM or a

MAPITEM parameter. If so, the tool migrates on that

basis.

v If the program and its associates are available, the

migration tool uses the VAGen qualification rules to

determine which record or map contains the item

and then migrates on that basis.

If the item is not qualified, the migration tool checks the

function’s parameter list to see if the item is specified there

as either an SQLITEM or a MAPITEM.

If the migration tool can determine that the item is in an

SQL record or on a map, the tool migrates to the

following:

v null for an SQL record

v blanks for a map item

If the migration tool cannot determine that the item is in

an SQL record or on a map, then the tool does the

following:

v Converts to EZE_NULL.

v Issues an error message indicating that this statement

should be reviewed.

Potential Problem: None. Potential Problem 1: A problem arises if the migration tool

uses EZE_NULL. There will be an error in the Problems

view.

Solution: Edit the function and change EZE_NULL to null

for an SQL item or blanks for a form variable field.

I/O error values UNQ and DUP

VisualAge Generator: UNQ and DUP are always soft errors for non-SQL and hard

errors for SQL. UNQ and DUP are always set for SQL based on the -803 SQL code.

If an I/O error routine is specified for the function, the error routine gets control

for the following:

v any soft error

v any hard error if EZEFEC = 1

v for DL/I I/O, any hard error if EZEDLERR or EZEFEC = 1

EGL: Duplicate is always a soft error and indicates the I/O was successful. Unique

is always a hard error and indicates the I/O failed. Duplicate is not supported for

SQL. The try block and onException statement are used for error handling. If an

onException statement is specified for the I/O statement, the onException

statement gets control for the following:

v any soft error

v any hard error if handleHardIOErrors = 1

v for DL/I I/O, any hard error if handleHardDLIErrors or handleHardIOErrors =

1

Associated part needed for migration: The record that is used in the statement.

104 Rational Software Development Platform: VisualAge Generator to EGL Migration Guide

Table 54. I/O error values UNQ and DUP

Migrating with the associated part Migrating without the associated part

Based on the first migration of this function, if the

record is available, the migration tool does the

following:

v If the record is non-SQL, the migration tool changes

DUP to duplicate and UNQ to unique.

v If the record is SQL, the migration tool changes both

DUP and UNQ to unique.

If the record is not available, the migration tool tries to

determine the type of the record as follows:

v If the statement specifies the same record as the

function’s I/O object, the migration tool checks to see if

the function also has SQL clauses, or any SQL-specific

information, such as Execution Time Statement Build,

single row select, cursor with hold or an

UPDATE/SETUPD function. If so, the migration tool

assumes that the record is SQL and converts DUP and

UNQ to unique.

v In other situations such as the following, the migration

tool cannot determine the record type:

– If the record is used as the I/O object of the function

but the function does not have SQL-specific

information.

– If the record is not used as the I/O object of the

function.

In the previous situations, and in other situations when

the migration tool cannot determine the record type, the

migration tool does the following:

– Converts UNQ to unique.

– Converts DUP to EZE_DUPLICATE and issues an

error message.

Chapter 3. Handling ambiguous situations 105

Table 54. I/O error values UNQ and DUP (continued)

Migrating with the associated part Migrating without the associated part

Potential Problem: A problem only arises if the same

record name has different definitions, one for SQL and

one for non-SQL, most likely in different subsystems. If

the non-SQL record is available when the function is

migrated, then there will be an error if the function is

used with an SQL record and checks for duplicate. If

the SQL record is available when the function is

migrated, then the additional information conveyed by

the duplicate check will not be available for the

non-SQL record.

Possible Solution: Copy the function and use the

original function for SQL and the new function for

non-SQL. Disadvantage: This has the potential to

ripple back into functions that use the original function

that checked for UNQ or DUP.

Potential Problem for SQL: None. DUP and UNQ

were always set the same way and unique continues to

be a hard error.

Potential Problem 1 for non-SQL: A problem arises if

you do not set handleHardIOErrors (EZEFEC) = 1 for

the program. In this case, because unique is now a hard

error, the onException statement will not get control

and the program will end.

Solution: Make sure your programs specify

handleHardIOErrors = 1;

Potential Problem 2 for nonSQL: A problem also

arises if you are explicitly testing for hardIOError

(HRD). In this case, because unique is now a hard error,

hardIOError will test true in EGL in some cases, even

though it did not test true in the past on VisualAge

Generator. Validation and generation will not detect an

error. However, the program might not run the same as it

did in VisualAge Generator.

Possible Solution: You might need to reorder the

testing of the I/O error values in your program logic.

Potential Problem 1: EZE_DUPLICATE is not valid in

EGL.

Solution: Edit the function and change EZE_DUPLICATE

to duplicate or unique based on the record type.

Other Potential Problems: The same potential problems

and solutions as shown for Migrating with the associated part

apply.

I/O error value LOK

VisualAge Generator: LOK is always a soft error for OS/400®. If an I/O error

routine is specified for the function, the error routine gets control for the following:

v any soft error

v any hard error if EZEFEC = 1

EGL: LOK is replaced by deadlock, but it is a hard error. The try block and

onException statement are used for error handling. If an onException statement is

specified for the I/O statement, the onException statement gets control for the

following:

v any soft error

v any hard error if handleHardIOErrors = 1

106 Rational Software Development Platform: VisualAge Generator to EGL Migration Guide

Associated part needed for migration: Not applicable.

 Table 55. I/O error value LOK

Migrating with the associated part Migrating without the associated part

The migration tool always changes LOK to deadlock. The migration tool does the same thing as mentioned in

the Migrating with the associated part column.

Potential Problem 1: A problem arises if you do not set

handleHardIOErrors (EZEFEC) = 1 for the program. In

this case, because deadlock is a hard error, the

onException statement will not get control and the

program will end.

Solution: Make sure your programs specify

handleHardIOErrors = 1;

Potential Problem 2: A problem also arises if you are

explicitly testing for hardIOError (HRD) . In this case,

because deadlock is a hard error, hardIOError will test

true in EGL in some cases where it did not test true in

VisualAge Generator. Validation and generation will

not detect an error. However, the program might not run

the same as it did in VisualAge Generator.

Possible Solution: You might need to reorder the

testing of the I/O error values in your program logic.

The same potential problems as in the Migrating with the

associated part column can occur. You can use the same

solutions.

Handling ambiguous situations for EZE words

For some EZE word replacements, an extra item variable must be declared in the

EGL program. The extra item variable is never declared as a local item variable in

the function because a segmented converse cannot be done if there is any function

open in the stack down to the segmented converse that has local storage,

parameters or return values. Adding the extra item variable to the program avoids

breaking any segmented converse.

EZELTERM

VisualAge Generator: EZELTERM is the conversation ID in a Web Transaction

program and the terminal ID in all other program types.

EGL: sysVar.conversationID is the conversation ID in a VGWebTransaction

program. sysVar.terminalID is the terminal ID in all other program types.

sysVar.conversationID and sysVar.terminalID are treated as synonyms so either

provides the correct information based on the program type.

Associated part needed for migration: The program.

 Table 56. EZELTERM

Migrating with the associated part Migrating without the associated part

Based on the first migration of this function, if the

program is available, the migration tool converts

EZELTERM based on the program type as follows:

v If the program is a Web Transaction program, the

migration tool uses: sysVar.conversationID

v Otherwise, the migration tool uses:

sysVar.terminalID

If the program is not available, the migration tool always

converts EZELTERM to:

sysVar.terminalID

Chapter 3. Handling ambiguous situations 107

Table 56. EZELTERM (continued)

Migrating with the associated part Migrating without the associated part

Potential Problem: None. sysVar.conversationID and

sysVar.terminalID are treated as synonyms.

Potential Problem: None. sysVar.conversationID and

sysVar.terminalID are treated as synonyms.

EZESYS

VisualAge Generator: EZESYS is generally used in IF, WHILE, and TEST

statements with literal values specified by VisualAge Generator. However, EZESYS

is permitted in other statements.

EGL: The EGL system variable sysVar.systemType has different values from

VisualAge Generator. When EZESYS is used in statements other than IF, WHILE,

and TEST, the migration tool does not know what values the program might be

expecting and so must use the original VAGen values. The EGL system library

function VGLib.getVGSystemType provides the old VAGen values.

Associated part needed for migration: Not applicable.

 Table 57. EZESYS

Migrating with the associated part Migrating without the associated part

When migrating any program, if the VAGen Migration

Preference Do not initialize old EZESYS values is not

selected, the migration tool does the following:

v Includes a declaration for custPrefixEZESYS.

v Includes an initialization statement to set the value

of custPrefixEZESYS to the old VAGen EZESYS

value.

If the preference is selected, the migration tool does

not include the declaration or initialization statement.

custPrefix is the same prefix that is used for changing

part names that conflict with reserved words. Use the

VAGen Migration Preferences to set its value.

The migration tool does the same thing as mentioned in the

Migrating with the associated part column.

108 Rational Software Development Platform: VisualAge Generator to EGL Migration Guide

Table 57. EZESYS (continued)

Migrating with the associated part Migrating without the associated part

Based on the first migration of the function, the

migration tool does the following:

v If EZESYS is used in an IF, WHILE, or TEST

statement, the migration tool converts EZESYS to

sysVar.systemType

The migration tool converts the EZESYS values to

their EGL equivalent value. If the EZESYS value

does not have an equivalent EGL value, the

migration tool migrates it ″as is″. For example, the

migration tool converts MVSBATCH to the EGL

equivalent zosbatch. The migration tool migrates

OS2 and NTCICS to the same value as in VisualAge

Generator. See Table 121 on page 298 for specifics of

which values are converted.

v If EZESYS is used in any other statement, the

migration tool does the following:

– Issues a warning message that this use will result

in the old VAGen EZESYS values

– Uses

custPrefixEZESYS

to replace EZESYS in the statement.

The migration tool does the same thing as mentioned in the

Migrating with the associated part column.

Chapter 3. Handling ambiguous situations 109

Table 57. EZESYS (continued)

Migrating with the associated part Migrating without the associated part

Potential Problem 1: A problem arises if you select the

VAGen Migration Preference Do not initialize old

EZESYS values during migration and you use EZESYS

in statements other than IF, WHILE, or TEST. In this

situation the migration tool uses custPrefixEZESYS in

the statement, but programs do not have a declaration

and initialization statement for custPrefixEZESYS.

There will be an error in the Problems view.

Potential Solution 1A: Change your EGL logic to use

the new values for sysVar.systemType.

Potential Solution 1B: Add a declaration and an

initialization statement for custPrefixEZESYS to any

program that needs to use the old VAGen value for

EZESYS.

Potential Problem 2: A problem arises for EZESYS

values that migrate as they are where there are no

EGL equivalent values (for example, TSO or AIXCICS).

There will be an error in the Problems view.

Possible Solution 2: Modify the function and change

the logic so that sysVar.systemType is not checked for

values that are not valid in EGL.

Potential Problem 3: A problem arises if you want to

use the new EGL values in statements other than if

and while.

Possible Solution 3: Modify the function and change

the logic to use sysVar.systemType instead of

custPrefixEZESYS

Be sure to change the old VAGen values to the new

EGL values in any dataTables that you use for

comparisons.

The same potential problems mentioned in the Migrating

with the associated part column apply. You can use the same

solutions.

EZEWAIT

VisualAge Generator: EZEWAIT specifies the time to wait in hundredths of a

second.

EGL: sysLib.wait, which is the replacement for EZEWAIT, specifes the time to wait

in seconds.

Associated part needed for migration: Not applicable.

 Table 58. EZEWAIT

Migrating with the associated part Migrating without the associated part

When migrating any program, the migration tool

always includes a declaration for

custPrefixEZE_WAIT_TIME.

The migration tool does the same thing as mentioned in the

Migrating with the associated part column.

110 Rational Software Development Platform: VisualAge Generator to EGL Migration Guide

Table 58. EZEWAIT (continued)

Migrating with the associated part Migrating without the associated part

When migrating a function, if EZEWAIT is used, the

migration tool includes logic to calculate the time to

wait in seconds and stores the result in

custPrefixEZE_WAIT_TIME.

The migration tool does the same thing as mentioned in the

Migrating with the associated part column.

Potential Problem: None. However, if you use the

function in a new program, be sure to include a

declaration for

custPrefixEZE_WAIT_TIME

in the program.

The same potential problem mentioned in the Migrating

with the associated part column applies.

Chapter 3. Handling ambiguous situations 111

112 Rational Software Development Platform: VisualAge Generator to EGL Migration Guide

Part 2. Migrating from VisualAge Generator 4.5 on Java to

EGL

© Copyright IBM Corp. 2004, 2006 113

114 Rational Software Development Platform: VisualAge Generator to EGL Migration Guide

Chapter 4. Stage 1 — Extracting from Java

Before you can extract your source code from VisualAge Generator, you must

install the Stage 1 migration tool that runs on VisualAge for Java. You must also

create the DB2 migration database that is used to store the data you are migrating

from VisualAge Generator 4.5 (VAGen 4.5) to EGL.

Installing the Stage 1 migration tool on VisualAge for Java

The VisualAge Generator to EGL Stage 1 migration tool is shipped as a

self-extracting file called VAGenMigJava.exe To install this file, do the following:

1. Upgrade to VisualAge Generator 4.5 with FixPak 5. Also review Appendix F,

“Situations where incorrect External Source Format causes problems in creation

of EGL,” on page 411 for additional VisualAge Generator APARs that might be

necessary for your specific situation.

2. On your system, determine where VisualAge for Java is installed.

3. Shut down VisualAge for Java.

4. Run the self-extracting file VAGenMigJava.exe, which is in the following

subdirectory of your Rational Developer installation directory:

 \egl\eclipse\plugins\com.ibm.etools.egl.vagenmigration_version\database

where version is the highest numbered version for the vagenmigration plugin.

For example, if you installed maintenance for RAD 6.0.1 ifix3, the version

number is 6.0.1.003.

Note: If you installed and kept a previous version of the developer product

before installing the product that you are using now, the installation

directory of interest may be the directory that was used in the earlier

install.

5. When the GUI prompt appears, navigate to the drive and directory where

VisualAge for Java is installed. (For example, c:\Program Files\IBM\VisualAge

for Java.) Then click Extract.

When the self-extracting executable runs, it extracts the following files into your

VisualAge for Java installation directory:

v \ide\vgmigration\MigPreferences.xml

v \ide\vgmigration\VGMigReserved.txt

v \ide\vgmigration\checkStage1.sql

v \ide\vgmigration\createdatabase.sql

v \ide\vgmigration\createindex.sql

v \ide\vgmigration\createtables.sql

v \ide\vgmigration\checkStage1.bat

v \ide\vgmigration\runStats.bat

v \ide\vgmigration\SetupDatabase.bat

v \ide\vgmigration\SetupIndex.bat

v \ide\vgmigration\SetupTables.bat

v \ide\vgmigration\deletemigsets.bat

v \ide\features\com-ibm-vgj-mig\

© Copyright IBM Corp. 2004, 2006 115

This last directory contains the feature for the Stage 1 migration tool on Java. It

also contains the .xml files and their corresponding .dtd files that are used by the

Stage 1 migration tool on Java.

Adding the migration feature

To be able to use the Stage 1 migration tool, you must add the IBM VisualAge

Generator EGL Migration feature. To do this, perform the following steps:

1. Start VisualAge Generator on Java.

2. Add the ″IBM VisualAge Generator EGL Migration″ feature as follows:

a. From the Workbench window, press F2.

b. Select Features in the left column and then Add Feature in the right

column. Click OK.

c. Select IBM VisualAge Generator EGL Migration - versionNumber. Click OK.

The migration feature will be loaded.

d. Click the Projects tab in the Workbench. You should see the ″IBM

VisualAge Generator EGL Migration″ project in your workspace.

Creating the migration database

See “Creating the DB2 migration database” on page 413 for information on

creating the migration database. You need to use the SetupDatabase.bat and

SetupTables.bat files that were placed in your VisualAge Java installation directory,

in subdirectory \ide\vgmigration directory.

Setting Stage 1 preferences

When you installed the Stage 1 migration tool on VisualAge for Java, the

installation process created a sample preferences file called MigPreferences.xml in

the directory VisualAge-Java-installation-directory\ide\vgmigration. You should make

a copy of the MigPreferences.xml file for backup purposes before you modify any

preferences. You might also want to copy the MigPreferences.xml to a directory

outside the VisualAge for Java installation directory and make your modifications

in the copy. This avoids accidentally overwriting your modifications if you install a

new version of the migration tool.

You can use a text editor or the GUI editor that is provided with the Stage 1

migration tool to edit the MigPreferences.xml file. To use the GUI editor, do the

following:

 1. Start VisualAge Generator for Java.

 2. In the Workbench window, click on the Projects tab.

 3. Navigate to the IBM VisualAge Generator EGL Migration project.

 4. Expand the migration project and then expand the package com.ibm.vgj.mig.

 5. Within the package, select the PreferencesUI class.

 6. Right-click on the PreferencesUI class and then click Properties from the

context menu.

 7. Select the Program tab.

 8. On the Program page, specify the following in the Command line arguments

field to point the MigPreferences.xml file you want to edit:

-p filename

where filename is the drive, directory, and file name of your

MigPreferences.xml file.

116 Rational Software Development Platform: VisualAge Generator to EGL Migration Guide

9. Click on OK to save the properties.

10. Right-click on the PreferencesUI and then click Run or Run main... (Or you

can click the running man icon from the tool bar.) The Stage 1 GUI

preferences editor opens and loads the file that you pointed to in the program

properties.

Note:

v If you do not use currently use Project List Parts (PLPs), see “Migration

plans and high-level PLP projects” on page 128.

v For preferences that require a drive and directory, you can specify the

information in either of two ways:

– An absolute path. For example: d:\tempMig\MySystem\

– A relative path. In this case the path is relative to the working

directory. For example, ..\tempMig\MySystem results in a path of :

VisualAge-Java-installation-directory\ide\project_resources

 \IBM VisualAge Generator EGL Migration\tempMig\MySystem.

v If you do not specify a drive and directory for the log, debug, and report

files, the files are written to the working directory which is:

VisualAge-Java-installation-directory\ide\project_resources

 \IBM VisualAge Generator EGL Migration

The preferences you can modify are described in the following sections, based on

the page within the GUI in which the preference appears:

v Build Plans

v Mapping

v Renaming

v Execution

Build Plans page

The Build Plans page identifies where the Stage 1 migration tool is to read or write

the migration plan file (or files), as well as which projects and versions you want

to migrate from your repository.

v Migration Specification. The Migration Specification identifies where the

migration tool is to write the migration plan file or files that the Stage 1 tool

creates based on your repository filters. Alternatively, if you have already

created the migration plan file (or files), the Migration Specification identifies

where the migration tool is to read the migration plan file (or files).

Note:

– Migration plan files have the file extension .pln before they are used to

load the migration database and .done after they have been successfully

processed.

– See “Running the Stage 1 tool” on page 127 for information on setting

the -o (override) option for the VAGenToEGLMigration class, which is

the actual Stage 1 migration tool.
– Plan directory. This is the target directory where you want your migration plan

file (or files) to be placed by the Stage 1 migration tool or in which the Stage

1 tool can find your existing migration plan file (or files).

– Plan file name. An optional file name of the migration plan file you are

creating or using to load the migration database. When you run the Stage 1

migration tool, this file name is used in conjunction with the -o (override)

option you specify for the VAGenToEGLMigration class as follows:

Chapter 4. Stage 1 — Extracting from Java 117

- If you include the -o option in the properties for the

VAGenToEGLMigration class, the Stage 1 migration tool does the following

based on the file name you specify in the Migration Specifications:

v If you do not specify a Plan file name, the migration tool deletes all the

.pln files in the specified Plan directory before creating new plan files.

The migration tool creates one plan file for each migration set. In this

case, the migration Plan file names are of the form

migrationSetName_version.pln.

v If you specify a Plan file name, the migration tool deletes only the

specified .pln file from the specified Plan directory before creating a new

.pln file with your specified Plan file name. In this case, the single Plan

file lists all the migration sets.

Use the -o option if you want the Stage 1 migration tool to create the

migration plan files for you based on your repository filters and high-level

PLP projects. If you need assistance creating a PLP project, see “Creating a

high-level PLP project” on page 128.
– If you omit the -o option from the properties for the VAGenToEGLMigration

class, the Stage 1 migration tool does not create any new migration plan files.

Instead, the Stage 1 migration tool runs based on the Plan directory and Plan

file name you specify in the Migration Specification:

- If you do not specify a Plan file name, the migration tool runs using all of

the .pln files in the specified Plan directory.

- If you specify a Plan file name, the migration tool runs using only that one

.pln file in the specified Plan directory.

Omit the -o option if you have previously created the migration plan files and

now want to run the Stage 1 migration tool to load the migration database

using these files. See “Creating a migration plan file manually” on page 130

for details about creating your own migration plan files.
v Repository filters. The Repository Filters section enables you to control which

projects and versions in your Java repository are considered by the Stage 1

migration tool. Limiting the projects and versions can greatly enhance the

performance of the Stage 1 migration tool. You can specify multiple filters. The

Stage 1 migration tool uses the Projects filter and the Version depth or Version

name filters as follows:

– The migration tool matches each VAGen project in the repository against the

Projects filters.

- If the project name does not match at least one of the Projects filters, the

project is not considered for further processing.

- If the project name matches at least one of the Projects filters, the versions

of the project are processed as follows:

v If you selected the Version depth filter, then the most recent versions of

the project, up to the number specified by the Version depth filter, are

considered for further processing. The default Version depth filter is 1.

v If you selected the Version name filter, then each version name for the

project is matched against the list of Version name filters. If the version

name matches any of the Version name filters, then the version is

considered for further processing.

Note: Version depth and Version name are mutually exclusive. By

default, the Version name filter is included in the

118 Rational Software Development Platform: VisualAge Generator to EGL Migration Guide

MigPreferences.xml file. If you want to use the Version depth filter,

select the Version depth radio button and specify the number of

versions you want to migrate.
– If the project name and version name result in the project version being

considered for further processing, the Stage 1 migration tool does the

following:

- If the project version is a high-level PLP project, then the Stage 1 migration

tool uses the project version as the basis for creating a migration set. Each

version of the high-level PLP project results in a different migration set,

assuming the version name matches the version filter.

- If the project version is not a high-level PLP project, the project version is

not considered for further processing. The project version might still be

included in other migration sets; there just will not be a migration set

specifically for this project version.

Specify the Repository Filters information as follows:

– Projects filter. The migration tool matches the project names in your repository

to the Projects filter that you specify. You can specify multiple Projects filters.

To add or remove filters, use the Add and Remove push buttons. To update a

filter, overtype in the table. The filters are not case sensitive. You can use

wildcards as follows:

- A project filter of *xyz* matches any project name in the repository that has

the string ″xyz″ anywhere in its name.

- A project filter of xyz* matches any project name in the repository that

begins with ″xyz″.

- A project filter of *xyz matches any project name in the repository that ends

with ″xyz″.
– Version depth filter. If a project name matches one of the Projects filters and

you selected the Version depth filter, the Stage 1 migration tool processes the

number of versions you have specified for the Version depth. The default is 1,

in which case the Stage 1 migration tool only processes the most recent

version of the project.

– Version name filter. If a project name matches one of the Projects filters and

you selected the Version name filter, the Stage 1 migration tool uses the

Version name filter to determine which, if any, of the project versions should

be considered for migration. You can specify multiple version name filters. To

add or remove filters, use the Add and Remove push buttons. To update a

filter, overtype in the table. The filters are not case sensitive. You can use

wildcards as follows:

- A version name filter of *xyz* matches any project version name that has

the string ″xyz″ anywhere in the version name.

- A version name filter of xyz* matches any project version name that begins

with ″xyz″.

- A version name filter of *xyz matches any project version name that ends

with ″xyz″.

Mapping page

The Mapping page enables you to control the placement of parts in EGL files and

the name of some of the EGL projects, packages, and files that are created during

migration.

v File names. The File names section enables you to control the names of two EGL

files that are created during migration.

Chapter 4. Stage 1 — Extracting from Java 119

– Common Parts enables you to specify the name of an EGL file to contain parts

that are common to multiple unique generatable parts within the scope of the

migration set. Specify the file name without an extension or path. The

migration tool creates a common parts file in each EGL package that contains

parts that are used by (associated with) multiple generatable parts in the

migration set or which are in VAGen projects or packages that are identified

as common projects or packages. See “Placing parts in EGL files” on page 38

for details about whether a part is placed with a program or in the Common

Parts file.

– Unused Parts enables you to specify the name of an EGL file to contain parts

that are not used within the scope of the migration set. Specify the file name

without an extension or path. The migration tool creates an unused parts file

in each EGL package that contains parts that are not used by (associated

with) any generatable part in the migration set, provided the corresponding

VAGen project and package are not identified as common projects or

packages.
v Spanning Maps. The Spanning Maps section enables you to specify suffixes that

are used in the event that one of your map groups includes maps from multiple

projects or packages.

– Project suffix enables you to specify a suffix that the Stage 1 migration tool

concatenates to the migration set name to create a new EGL project name. The

migration tool only creates this new EGL project if a map group and its maps

are in multiple VAGen projects within the migration set. The new project

name is migrationSetName_ProjectSuffix. The migration tool concatenates the

suffix to the migration set name after any Renaming rules are applied.

– Package suffix enables you to specify a suffix that the Stage 1 migration tool

concatenates to a project name to create a new EGL package name within an

EGL project. The migration tool only creates this new EGL package if a map

group and its maps are in multiple VAGen packages within a project. The

new package name is projectName_PackageSuffix. The migration tool

concatenates the suffix to the project name after any Renaming rules are

applied.
v Common Identifiers. The Common Identifiers section enables you to specify a

list of strings with wildcards that the migration tool can use in determining

which VAGen projects and packages contain common (shared) parts.

– The Projects list enables you to specify a list of strings that identifies projects

that contain common parts. The migration tool matches this list of strings to

each project name in the migration set to determine if the project contains

common parts. If any string matches a project name, all parts within the

project are considered to be ″used.″ Each non-generatable part will either be

placed in a program file or in the file specified by your Common Parts

preference. The part will not be placed in the unused parts file even if the

part is not used by any generatable part in the migration set. You can specify

multiple Projects filters. To add or remove filters, use the Add and Remove

push buttons. To update a filter, type over it in the table. The filters are not

case sensitive. You can also use an * as a wildcard at the beginning or end of

the string.

– The Packages list enables you to specify a list of strings that identifies

packages that contain common parts. The migration tool matches this list of

strings to each package name in the migration set to determine if the package

contains common parts. If any string matches a package name, all parts

within the package are considered to be ″used.″ Each non-generatable part

will either be placed in a program file or in the file specified by your

Common Parts preference. The part will not be placed in the unused parts file

120 Rational Software Development Platform: VisualAge Generator to EGL Migration Guide

even if the part is not used by any generatable part in the migration set. You

can specify multiple Packages filters. To add or remove filters, use the Add

and Remove push buttons. To update a filter, type over it in the table. The

filters are not case sensitive. You can also use an * as a wildcard at the

beginning or end of the string.

Renaming page

The Renaming page enables you to specify renaming rules for your projects,

packages, and version names. The Renaming Rules section enables you to control

the names of the EGL projects and packages that are derived from your VAGen

project and package names. The number in the order column indicates the order in

which the Stage 1 migration tool is to apply the renaming rules, with the lowest

numbered rule applied first. To add or remove a renaming rule, use the Add and

Remove push buttons. To update a renaming rule, overtype the contents of the

cells in the table. You can double-click on any of the column headings to sort the

rules based on that column. You specify a rule by specifying the following

information:

v Order specifies the order in which the rules are to be applied.

v From String specifies the characters in the VAGen name that you want to change.

v To String specifies the characters you want to use in the resulting EGL name.

v String Context specifies the location in the VAGen name where the migration tool

should look for the from string during renaming. The values are as follows:

– front means the rule applies if the from string appears at the beginning of a

project, package, or version name.

– back means that the rule applies if the from string appears at the end of a

project, package, or version name.

– any means that the rule applies if the from string appears anywhere within a

project, package, or version name.

– token means that the rule applies only if the from string is an exact match for

the project, package, or version name.
v Mapping Context indicates whether the migration tool is to apply the renaming

rule to a project, package, or version name. The values for Mapping Context are

as follows:

– project means that the renaming rule only applies to VAGen project names.

– package means that the renaming rule only applies to VAGen package names.

– both means that the renaming rule applies to both VAGen project names and

VAGen package names.

– version means that the renaming rule applies to the version names for all

project names. Use a version renaming rule if your version names include

special characters such as a semicolon (;) that are not permitted in directory

or file names. The default MigPreferences.xml file includes several version

renaming rules to help ensure that your version names do not result in

invalid directory or file names. The migration tools use the renamed versions

to create the migration plan file names in Stage 1 and to create directory

names in Stage 3 of migration.

Execution page

v Execution Options. The Execution Options section enables you to specify what

you want the Stage 1 migration tool to do.

– Generate report specifies that you want to create a migration report showing

where each part will be placed in the EGL project, package and file structure.

Chapter 4. Stage 1 — Extracting from Java 121

This report is useful for reviewing the results of preferences you specified for

Common Parts and Unused Parts file names, Spanning maps suffixes,

Common Identifiers for projects and packages, and your renaming rules. If

you select Generate report, the migration tool creates the report in the drive,

directory and file you specify for the Report file name in the Verification

section.

– Update database specifies that you want the Stage 1 migration tool to store the

migration plan information, including the External Source Format for your

parts, into the migration database.

You might run the Stage 1 migration tool in several steps as follows:

– Step 1 -- Deselect both Generate report and Update database. This enables

you to review the migration plan files that are created an ensure that your

Repository Filters are set correctly and will process the project versions that

you want. If you are not satisfied with the project versions that are being

selected, you can refine your Repository Filters and run this step again until

you are satisfied with the project versions that the migration tool will process.

– Step 2 -- Select only Generate report. This enables you to review the report

that shows how your VAGen projects, packages, and parts will be assigned to

EGL projects, packages, and files during migration. If you are not satisfied

with the placement of parts, you can refine your Mapping and Renaming

rules and run the report again until you are satisfied with the placement of

parts.

– Step 3 -- Select both Generate report and Update database. This provides you

with a final report that records the information that is stored in the migration

database.

Note:

– Generating the report can take some time. Therefore it is best to review

the .pln files to be sure that the migration tool will process the project

versions that you intend.

– The report files are overwritten if a report is generated. If you want to

save previous report files, you must move the report files to a different

directory or point to a new directory for your new report. Because the

report files link to other files, renaming the report files will cause the

links to be lost so the files are no longer viewable.
v Database. The Database section enables you to specify details about the

migration database:

– Database driver. This value should always be

COM.ibm.db2.jdbc.app.DB2Driver.

– Database name. This value should always be one of the following:

- jdbc:DB2:databaseName if you are using a local database.

- jdbc:nodeName:databaseName if you are using a remote database.

Note: In both cases, databaseName is the name of the migration database into

which the migration tool is to write the migration set information. By

default, the databaseName is VGMIG. If you changed the database

name from VGMIG when you created the migration database, you

must change the database name specified by this preference to match

the name you used.

– Schema is the name used as the qualifier for the database tables. By default,

the schema name is MIGSCHEMA. If you changed the schema name from

MIGSCHEMA when you created the migration database, you must change

the schema name specified by this preference to match the name you used.

122 Rational Software Development Platform: VisualAge Generator to EGL Migration Guide

– Userid is the user ID needed to connect to the migration database. If you not

specify the Userid, the migration tool attempts to connect using your logon

user ID. If this attempt fails, the migration tool displays a dialog window

asking for the information.

– Password is the password needed to connect to the migration database. If you

not specify the password, the migration tool attempts to connect using your

logon password. If this attempt fails, the migration tool displays a dialog

window asking for the information.

Note: The password is not encrypted in the preferences file. If this is a

concern, do not enter the password in the preferences file. Wait for the

prompt.
v Service. The Service section enables you to specify details about the logging and

debug information you want to capture during Stage 1. You can specify the

following:

– Trace level enables you to specify the level of information that you want to

write to the log and debug files. Use the drop-down list to specify one of the

following values:

1. Fatal error messages are logged. If any of these messages occur, the

migration database might be updated, but the migration plan file (.pln

file) is not changed to have the .done file extension. This enables you to

reprocess the .pln file.

2. Warning messages, as well as fatal error messages are logged.

3. Informational messages, as well as warning and fatal error messages are

logged.

4. Debug information, as well as informational, warning, and fatal error

messages are logged. DEBUG is the only trace level that causes the

migration tool to write information to the debug file.

The Trace level only affects the log and debug files. All the messages are

written to the Console window.

– Log file name enables you to specify the drive, directory, and file name for a

log file. You can create the log file with any file extension, but it is best

viewed as an .xml file. If you omit the log file name, the migration tool writes

the log information to a file named miglog.xml in the drive and directory that

you specified in the Log file name field. If you do not specify a Log file drive

and directory, the migration tool writes the log file to the working directory.

– Debug file name enables you to specify the drive, directory, and file name for a

debug file that might be needed by IBM support. You can create the debug

file with any file extension, but it is best viewed as an .xml file. Information is

only written to this file if the Trace level preference is set to Debug. If you

omit the debug file name and you specify a Trace level of Debug, the

migration tool writes the debug file information to a file migdebug.xml in the

drive and directory that you specified in the Debug file name field. If you do

not specify a Debug file drive and directory, the migration tool writes the

debug file to the working directory.
v Verification. The Verification section enables you to specify the drive, directory,

and file name for the verification report that is produced when you select the

Generate report preference in the Execution Options section. If you select

Generate report, you must enter a Report file name. You should always specify

the .htm extension. If you do not specify a drive and directory, the migration

tool writes the report file to the working directory.

Chapter 4. Stage 1 — Extracting from Java 123

Sample MigPreferences.xml file

The following is a sample MigPreferences.xml file:

<preferences>

 <database>

 <driver>COM.ibm.db2.jdbc.app.DB2Driver</driver>

 <uri>jdbc:DB2:VGMIG</uri>

 <schema>MIGSCHEMA</schema>

 <userid></userid>

 <password></password>

 </database>

 <migrationSpec>

 <directory>d:\tempMig\MyMigSet</directory>

 <filename></filename>

 </migrationSpec>

 <repositoryFilters>

 <projectName>MyProject*</projectName>

 <versionName></versionName>

 </repositoryFilters>

 <service>

 <tracelevel>4</tracelevel>

 <debugfile>d:\tempMig\MyMigSet\Stage1\migdebug.xml</debugfile>

 <logfile>d:\tempMig\MyMigSet\Stage1\miglog.xml</logfile>

 </service>

 <eglMapping>

 <renameRule order = "1">

 <fromString> </fromString>

 <toString></toString>

 <stringContext>any</stringContext>

 <mappingContext>both</mappingContext>

 </renameRule>

 <renameRule order = "101">

 <fromString>Project</fromString>

 <toString></toString>

 <stringContext>any</stringContext>

 <mappingContext>project</mappingContext>

 </renameRule>

 <renameRule order = "301">

 <fromString>.pkg</fromString>

 <toString></toString>

 <stringContext>any</stringContext>

 <mappingContext>package</mappingContext>

 </renameRule>

 <renameRule order = "302">

 <fromString>.sql</fromString>

 <toString>sql</toString>

 <stringContext>any</stringContext>

 <mappingContext>package</mappingContext>

 </renameRule>

 <renameRule order = "501">

 <fromString>:</fromString>

 <toString>_</toString>

 <stringContext>any</stringContext>

 <mappingContext>version</mappingContext>

 </renameRule>

 <renameRule order = "502">

 <fromString>/</fromString>

 <toString>_</toString>

 <stringContext>any</stringContext>

 <mappingContext>version</mappingContext>

 </renameRule>

 <renameRule order = "503">

 <fromString>\</fromString>

 <toString>_</toString>

 <stringContext>any</stringContext>

 <mappingContext>version</mappingContext>

 </renameRule>

124 Rational Software Development Platform: VisualAge Generator to EGL Migration Guide

<renameRule order = "504">

 <fromString>|</fromString>

 <toString>_</toString>

 <stringContext>any</stringContext>

 <mappingContext>version</mappingContext>

 </renameRule>

 <renameRule order = "505">

 <fromString>?</fromString>

 <toString>_</toString>

 <stringContext>any</stringContext>

 <mappingContext>version</mappingContext>

 </renameRule>

 <renameRule order = "506">

 <fromString>*</fromString>

 <toString>_</toString>

 <stringContext>any</stringContext>

 <mappingContext>version</mappingContext>

 </renameRule>

 <renameRule order = "507">

 <fromString><</fromString>

 <toString>_</toString>

 <stringContext>any</stringContext>

 <mappingContext>version</mappingContext>

 </renameRule>

 <renameRule order = "508">

 <fromString>></fromString>

 <toString>_</toString>

 <stringContext>any</stringContext>

 <mappingContext>version</mappingContext>

 </renameRule>

 <renameRule order = "509">

 <fromString>"</fromString>

 <toString>_</toString>

 <stringContext>any</stringContext>

 <mappingContext>version</mappingContext>

 </renameRule>

 <renameRule order = "510">

 <fromString> </fromString>

 <toString>_</toString>

 <stringContext>any</stringContext>

 <mappingContext>version</mappingContext>

 </renameRule>

 <verification>

 <generateReport>true</generateReport>

 <reportName>d:\tempMig\MyMigSet\report\MyReport.htm</reportName>

 </verification>

 <dbUpdate>true</dbUpdate>

 <spanningMapsProjectSuffix>MapsProject</spanningMapsProjectSuffix>

 <spanningMapsPackageSuffix>mapspackage</spanningMapsPackageSuffix>

 <commonPartsFileName>CommonParts</commonPartsFileName>

 <unusedPartsFileName>UnusedParts</unusedPartsFileName>

 <commonParts>

 <commonProject>*Common*</commonProject>

 <commonPackage>*common*</commonPackage>

 </commonParts>

 </eglMapping>

 </preferences>

Before you run the Stage 1 tool — hints and tips

Before you run the Stage 1 migration tool, there are some things you might want

to do to improve performance. You might also want to save your existing

workspace for use after migration is completed.

Chapter 4. Stage 1 — Extracting from Java 125

Improving performance

Performance measurements have shown that the performance Stage 1 migration

tool can be improved dramatically by starting with a clean workspace. In one

series of tests, starting with a clean workspace reduced the time for Stage 1 to 25%

- 30% of the time without a clean workspace. If your existing workspace is larger

than 20 megabytes, starting with a clean workspace might help the Stage 1 tool

performance.

To start with a clean workspace, do the following:

1. Shut down VisualAge Generator.

2. See “Saving your workspace” on page 126 if you want to keep a backup copy

of your existing workspace to use after migration has completed.

3. Obtain a copy of a clean workspace (file name ide.icx) from the VisualAge

Generator download site at:

ftp://ftp.software.ibm.com/ps/products/visualagegen/fixes/v4.5/FixPack5/windows

4. Delete the features.sav and projects.sav files.

5. Restart VisualAge Generator.

6. Add the VisualAge Generator features that you need.

7. Add the ″IBM VisualAge Generator EGL Migration″ feature.

8. Shut down VisualAge Generator.

To reduce the time the Stage 1 migration tool spends analyzing which projects and

versions to migrate, consider creating a repository that only contains the project

versions that you want to migrate. If you have ongoing maintenance in VisualAge

Generator while you are migrating, a separate migration repository also has the

following advantages:

v There is a stable set of project versions to migrate. This is particularly important

if you use the Version Depth preference to control what is to be migrated.

v You can compare the versions in the new migration repository against your

maintenance repository to determine what additional project versions still need

to be migrated.

If you do create a special repository, consider using it as a local repository to

improve Stage 1 migration performance.

Saving your workspace

The Stage 1 migration tool deletes all projects that contain VAGen parts from your

workspace at the beginning and end of Stage 1 processing. This helps to avoid

duplicate parts in the workspace and ensures that only parts in the migration set

are considered for the associate parts list during Stage 1. If you have a workspace

that you wish to save, you should do the following before running the Stage 1

tool:

1. Shut down VisualAge Generator.

2. Save backup copies of the following files in your \VisualAgeForJava-installation-
directory\ide\program:

v features.sav

v projects.sav

v ide.icx

v ide.ini — not necessary to save if you do not change any preferences while

running Stage 1

126 Rational Software Development Platform: VisualAge Generator to EGL Migration Guide

v hpt.ini — not necessary to save if you do not change any preferences while

running Stage 1
3. Start VisualAge Generator.

When you are finished running the Stage 1 tool, do the following to restore your

workspace:

1. Shut down VisualAge Generator.

2. Restore the files you backed up before running the Stage 1 tool.

3. Start VisualAge Generator.

Running the Stage 1 tool

After you have finished editing your preferences, you are ready to run the Stage 1

migration tool to extract your source code from the Java repository. To do this,

perform the following steps:

1. Navigate to the IBM VisualAge Generator EGL Migration project.

2. Expand the migration project and then expand the package com.ibm.vgj.mig.

3. Within the package, select the VAGenToEGLMigration class.

4. Right-click on the VAGenToEGLMigration class and then click Properties from

the context menu.

5. Select the Program tab.

6. On the Program page, specify the following in the Command line arguments

field to point the MigPreferences.xml file you want to edit:

 Table 59. Valid command line options for VAGentoEGLMigration class

Option Meaning of option

—h Display help information that shows the valid options

—p filename Use ″filename″ as the name of the preferences file. You

must fully qualify the file name, including the drive and

directory.

—o Overwrite the migration files if they exist and recreate

them.

7. If this is the first time you are running the Stage 1 tool, do the following:

a. In the same Properties window, select the Class Path tab.

b. On the Class Path page, select the Extra directories path check box and

then click on the Edit button for the Extra directories.

c. Select the Add Jar/Zip button.

d. In the File selection window, navigate to and select the db2java.zip file.

v If you used the default install directory when you installed DB2, the file

should be in the \SQLLIB\java directory.

After you select the db2java.zip file, the file name appears in the Extra

directories window. Click OK on the Extra Directories window.

e. On the Class Path page, click the Compute Now button and then click Yes

at the prompt.
8. Click on OK to save the properties.

9. Right-click on the VAGenToEGLMigration and then click Run or Run main...

(Or you can pick the running man icon from the tool bar.) The Stage 1

migration tool starts and opens a Console window where it reports progress

Chapter 4. Stage 1 — Extracting from Java 127

and any error messages. The migration tool also writes the messages to the log

file you specified in your migration preferences.

When the Stage 1 migration tool finishes, if you selected the Update database

preference, then your migration plan information, including your VAGen code in

External Source Format, is stored in the migration database. After reviewing your

report and the Stage 1 messages, you might decide to make changes to your code

in VisualAge Generator and run Stage 1 again. After you are satisfied with the

results of Stage 1 and have your final External Source Format code stored in the

migration database, you are ready to perform Stage 2 of the migration. To run the

Stage 2 migration tool, you use the EGL development environment. See Chapter 6,

“Stage 2—Conversion to EGL syntax,” on page 155 for information about

continuing your migration process.

Migration plans and high-level PLP projects

A migration plan file is simply an XML file that specifies the names of one or more

migration sets and, for each migration set, the list of project names and versions

that make up the migration set. The Stage 1 migration tool is designed to

automatically create a migration plan file for you based on the repositoryFilter

preferences for project and version names. The Stage 1 tool uses these filters to

determine if a project version should be reviewed to determine if the project

version is a high-level PLP project. The Stage 1 tool uses each high-level PLP

project version as the basis for a migration set.

If you use PLP projects when generating your VAGen source code, then these PLP

projects are the same ones you should use for migration. This is because the PLP

projects provide groupings of parts that are used together during generation and

therefore have all the associated parts for a set of programs.

If you do not currently use PLP projects, you can do one of the following:

v Create a high-level PLP project that specifies the list of project versions that you

want to migrate as a group. Then you can use the Stage 1 migration tool to

automatically create the migration plan for you.

v If you prefer not to create a high-level PLP project, you can create the migration

plan file yourself using one of the following techniques:

– If you have information in a database or other system that specifies what is

needed for generation in terms of Java project versions, then you can write a

tool to create the migration plan file or files automatically from your

database.

– Create the migration plan file or files manually.

Creating a high-level PLP project

Note: VisualAge Generator does not support PLPs if the project names or version

names include DBCS characters. If your project or version names include

DBCS characters, see “Creating a migration plan file manually” on page 130

for information on how to create the migration plan file without using a

PLP.

To create a high-level PLP project for use in migration do the following in

VisualAge Generator:

1. From the Workbench window, select the Projects tab.

128 Rational Software Development Platform: VisualAge Generator to EGL Migration Guide

2. Create a new Java project to contain the Project List Part. Be sure to give the

project a different name than that of any of your existing projects. For example,

create a project called MySubsystem1.

3. Select the new project, right-click and select Manage -> Configure VAGen

Required Projects from the context menu.

4. In the Configure VAGen Required Projects window, select each project that you

want to include in your migration set. For each project you can select a specific

version to include in the migration set. Alternatively, you can select Most recent

edition, which causes the migration tool to automatically include the version

that is currently at the top of the list whenever you use this project during

migration.

5. After you have selected all the project versions that you require for the

migration set, click OK.

6. Version and release the high-level PLP project, for example MySubsystem1.

7. Test that the PLP project correctly loads the project versions you want for your

migration set as follows:

a. Delete the high-level PLP project and any other VAGen projects from your

workspace.

b. Click Selected -> Add -> Project.

c. From the Add Project window, do the following:

1) Select Add projects from the repository.

2) Select the high-level PLP project that you just created and the version

that you created.

3) Also select Add VAGen required projects.

4) Click Finish.
d. The high-level PLP project and all the project versions it specifies are added

to your workspace.

e. From the VAGen Parts Browser, select Tools -> Show Duplicate Parts.

There should not be any parts on the list. If there are, you need to change

the high-level PLP project so that there are no duplicates.

f. You might also want to run validation for your programs and tables to

ensure that they are valid in VisualAge Generator and that you are not

missing any parts.

You can chain PLP projects. For example, create a PLP project that lists the project

versions for all your common projects. Then, for each subsystem, create a

high-level PLP project for that subsystem that includes all the subsystem-specific

project versions and the PLP project that specifies all the common project versions.

This way you do not have list each common project version in every subsystem’s

high-level PLP project.

When you are ready to run the Stage 1 migration tool, do the following:

v When you set your Stage 1 preferences, on the Build plans page, in the

Repository Filters section, set the Projects list so that a filter in the list matches

the high-level PLP project you created.

v When you instruct the Stage 1 tool which preferences file to use, also specify the

-o option. The -o option instructs the Stage 1 migration tool to create the

migration plan files for you based on your high-level PLP projects and to

overwrite any existing migration plan files.

Chapter 4. Stage 1 — Extracting from Java 129

Creating a migration plan file manually

If you already have external controls that determine what project versions to add

to your workspace when you generate in VisualAge Generator, you might decide

to create the migration plan file manually or to develop a tool to create the

migration plan file automatically from your external information. The migration

plan file must have a .pln file extension and the following format:

<migrationDefinition>

 <migrationSet name="migrationSet1" version="migrationSet1Version1"

 vgName="migrationSet1" vgVersion="migrationSet1Version1">

 <project name="projectName1" version="projectName1Version1"></project>

 <project name="projectName2" version="projectName2Version1"></project>

 .

 .

 .

 <project name="projectNameN" version="projectNameNVersion1"></project>

 </migrationSet>

 <migrationSet name="migrationSet2" version="1.1"

 vgName="migrationSet2" vgVersion="1.1">

 <project name="projectNameA" version="projectNameAVersion1"></project>

 <project name="projectNameB" version="projectNameBVersion1"></project>

 .

 .

 .

 <project name="projectNameZ" version="projectNameZVersion1"></project>

 </migrationSet>

</migrationDefinition>

In the previous example, the following applies:

v migrationSet1 is a name that you can use to refer to a group of projects that

must be migrated together. The migration set name is stored in the migration

database and is used in the later stages of migration as follows:

– In Stage 1 migration, if maps in a map group span projects, the migration set

name concatenated with a suffix is used to build the name of a new EGL

project that will contain the map group and all its maps. The migration set

name is also used to remove information from the migration database if you

change renaming rules.

– In Stage 2 migration, the migration set name specifies which group of projects

in the migration database that you want to convert to EGL.

– In Stage 3, the migration set name specifies which group of projects in the

migration database you want to use to create EGL projects, packages, and

files in your workspace or in a temporary directory. The migration set name

and the migration set version are also used to create the high-level directory

name if you choose to save the outputs of Stage 3 to a temporary directory.

The migration set name is only used during migration as a way of identifying a

group of projects. Other than the situation in which maps span multiple projects

in VisualAge Generator, the migration set name is not used after migration.

v projectName1, projectName2, ..., projectNameN are the projects you want to

migrate as a group. You must only list a projectName once within a migration

set. The migration tool loads all project versions listed under the same migration

set into the workspace and processes them as a group.

v projectName1Version1, projectName2Version1, ..., projectNameNVersion1 are the

respective versions of each of these projects. You can only specify one version

for each project within a migration set.

v The project names and version names you specify must exactly match the

project names and version names in your repository. The names are case

130 Rational Software Development Platform: VisualAge Generator to EGL Migration Guide

sensitive. The information is used to add project versions to the workspace so

that the parts can be analyzed to build the Stage 1 migration report and to load

the database.

You can build a migration plan file that contains just one migration set.

Alternatively, you can build a migration plan file that contains several migration

sets by repeating the information between the <migrationSet> and

</migrationSet> tags for each migration set.

You should test each migration set in your migration plan to ensure the migration

set is valid as follows:

v Delete all your VAGen projects from your workspace.

v Manually add the project versions specified in the migration set to your

workspace. Be sure to add the version of each project that you specified in the

migration set. Note that the Stage 1 migration tool stops if a specified project

version or package version is not available in the respository.

v From the VAGen Parts Browser, select Tools > Show Duplicate Parts. There

should not be any parts on the list. If there are, you need to change your

migration set definition so that there are no duplicates. Note that the Stage 1

migration tool stops if there are any duplicate parts in the migration set.

v The Stage 1 migration tool requires that the projects be versioned. Run a

Management Query to determine whether there are any open or scratch editions

of projects or packages. To run a Management Query, do the following:

1. From the Workbench window, select Workspace > Management Query.

2. From the Management Query window, do the following:

a. In the Program element section, select Projects and Packages. Be sure

that Types is deselected.

b. In the Status section, select Scratched.

c. In the Scope section, select Workspace.

d. In the Owners section, select Any User.

e. Select the Run Query button (the last button on the tool bar). There

should not be any scratch editions. If there are scratch editions, create

open editions of the projects and packages. If you are the owner, you can

create the open editions from the Status pane.

f. Change the Program element section to select Projects, Packages, and

Types.

g. Change the Status section to select Open Edition.

h. Select the Run Query button.

i. There should not be any open editions other than for the IBM VisualAge

Generator EGL Migration project. If there are open editions, version the

projects, packages, or types. If you are the owner, you can version them

from the Status pane.
v Run validation for your programs and tables to ensure that they are valid in

VisualAge Generator and that you are not missing any parts.

When you are ready to run the Stage 1 migration tool, do the following:

v When you set your Stage 1 preferences, on the Build plans tab, set the Plan

directory name to the drive and directory where you stored your migration plan

files. Specify the Plan file name if you want the Stage 1 migration tool to run

only one migration plan that you have created. Leave the Plan file name blank

if you want the Stage 1 migration tool to run using all the migration plan files

in the specified Plan directory.

Chapter 4. Stage 1 — Extracting from Java 131

v When you instruct the Stage 1 tool which preferences file to use, be sure to omit

the -o option. Omitting the -o option instructs the Stage 1 tool to use the existing

migration plan files. That is, the tool is not to create any new migration plan

files.

132 Rational Software Development Platform: VisualAge Generator to EGL Migration Guide

Part 3. Migrating from VisualAge Generator 4.5 on Smalltalk to

EGL

© Copyright IBM Corp. 2004, 2006 133

134 Rational Software Development Platform: VisualAge Generator to EGL Migration Guide

Chapter 5. Stage 1 — Extracting from Smalltalk

Before you can extract your information from VisualAge Generator, you must

install the Stage 1 migration tool that runs on VisualAge Smalltalk. You must also

create the DB2 migration database that is used to store the data you are migrating

from VisualAge Generator 4.5 (VAGen 4.5) to EGL.

Installing the Stage 1 migration tool on VisualAge Smalltalk

The VisualAge Generator to EGL Stage 1 migration tool is shipped as a

self-extracting file called VAGenMigST.exe To install this file, do the following:

1. Upgrade to VisualAge Generator 4.5 with FixPack 4 and FixPack 5. Also review

Appendix F, “Situations where incorrect External Source Format causes

problems in creation of EGL,” on page 411 for additional VisualAge Generator

APARs that might be necessary for your specific situation.

Note: An early version of Fix Pack 5 for VAGen on Smalltalk was not

cumulative. Check the readme file to ensure that the version of Fix Pack

5 you are using is cumulative. If necessary, download the Fix Pack again

or contact IBM Support.

2. On your system, determine where VisualAge Smalltalk is installed.

3. Shut down VisualAge Smalltalk.

4. Run the self-extracting VAGenMigST.exe file. The file is in the following

subdirectory under your Rational Developer installation directory:

 \egl\eclipse\plugins\com.ibm.etools.egl.vagenmigration_version\database

where version is the highest numbered version for the vagenmigration plugin.

For example, if you installed maintenance for RAD 6.0.1 ifix3, the version

number is 6.0.1.003.

Note: If you installed and kept a previous version of the developer product

before installing the product that you are using now, the installation

directory of interest may be the directory that was used in the earlier

install.

5. When the GUI prompt appears, navigate to the drive and directory where

VisualAge Smalltalk is installed. Then click Extract.

When the self-extracting executable runs, it extracts the following files into your

VisualAge Smalltalk installation directory:

v import\vgMigSt.dat

v feature\vgMigSt.ctl

v image\Messages.properties

v image\MigPreferences.xml

v image\VGMigReserved.txt

v checkStage1.sql

v createdatabase.sql

v createindex.sql

v createtables.sql

v checkStage1.bat

© Copyright IBM Corp. 2004, 2006 135

v runStats.bat

v SetupDatabase.bat

v SetupIndex.bat

v SetupTables.bat

v deletemigsets.bat

Loading the migration feature

To be able to use the Stage 1 migration tool, you must load the VAGen EGL

Migration feature. To do this, perform the following steps:

1. Start VisualAge Generator on Smalltalk.

2. Load the VAGen EGL Migration feature by doing the following:

a. From the System Transcript, select Tools -> Load/Unload Features.

b. On the Selection Required window, do the following:

1) Ensure the Show other features checkbox is selected.

2) In the Available features pane, select Other: VAGen EGL Migration -

versionName.

3) Select the >> button to move Other: VAGen EGL Migration -

versionName to the Loaded features pane.

4) Click OK. The VAGen EGL Migration feature will be imported and

loaded into your image.
3. In the System Transcript, you should see messages that the VAGen EGL

Migration feature was loaded successfully. You should also see EGL Migration

Tools on the tool bar. In the VisualAge Organizer, you should see

HptEglMigrationGuiApp in the Applications pane.

4. After the VAGen EGL Migration feature is loaded, you will be prompted to

save your image. Click Yes so you do not have to load the feature again.

Note: If you have a problem loading the feature, check your abt.ini file (contained

in the VisualAge-Smalltalk-installation-directory\image directory). Make sure

the abt.ini file has the following fields filled in under the

[EmLibraryInterface] heading:

v ServerAddress=myserver.somecompay.somewhere.com. This value should

point to the server at your company that runs EMSRV. If you use a local

library, set ServerAddress=127.0.0.1.

v DefaultName=path-to-mgr50.dat\mgr50.dat. This value must be the name of

your Smalltalk library.

Creating the migration database

See “Creating the DB2 migration database” on page 413 for information on

creating the migration database. You need to use the SetupDatabase.bat and the

SetupTables.bat files that were placed in the VisualAge Smalltalk installation

directory when you ran the self-extracting VAGenMigST.exe file.

Setting Stage 1 preferences

When you installed the Stage 1 migration tool on VisualAge Smalltalk, the

installation process created a sample preferences file called MigPreferences.xml in

the directory VisualAge-Smalltalk-installation-directory\image. You should make a

copy of the MigPreferences.xml file for backup purposes before you modify any

preferences. You might also want to copy the MigPreferences.xml to a directory

136 Rational Software Development Platform: VisualAge Generator to EGL Migration Guide

outside the VisualAge for Smalltalk installation directory and make your

modifications in the copy. This avoids accidentally overwriting your modifications

if you install a new version of the migration tool.

The VisualAge Generator to EGL migration tool on Smalltalk provides a GUI

editor to assist you in specifying your Stage 1 migration preferences. You can start

the Stage 1 preferences editor in either of two ways:

v From the System Transcript, select EGL Migration Tools -> Preferences Editor.

The EGL Migration Preferences Editor appears. The preferences editor defaults

to the last preferences file that you modified (or to the MigPreferences.xml file

that is shipped with the Stage 1 tool if you have never modified preferences

before). If you need to point to a different preferences file, click the Open...

button.

v From the System Transcript, select EGL Migration Tools -> Migration Driver. In

the Migration File Preference section, specify a file name for your preferences

file and then click Edit. The EGL Migration Preferences Editor appears. The

advantage of this technique is that after you finish modifying the preferences

file, you are positioned to run the Stage 1 migration tool.

Regardless of which technique you use, the EGL Migration Preferences Editor

enables you to set preferences that control the Stage 1 migration tool. When you

are finished editing the preferences, click the Save or Save As... button, and then

close the editor.

Note:

v If you do not use currently use configuration maps, see “Migration plans

and high-level configuration maps” on page 149.

v For preferences that require a drive and directory, you can specify the

information in either of two ways:

– an absolute path. For example: d:\tempMig\MySystem\

– a relative path. In this case the path is relative to the working directory.

For example:

- .\tempMig\MySystem results in an absolute path of

VisualAge-Smalltalk-installation-directory\image\tempMig\MySystem

- ..\tempMig\MySystem results in an absolute path of

VisualAge-Smalltalk-installation-directory\tempMig\MySystem

The preferences you can modify are described in the following sections, based on

the page within the GUI in which the preference appears:

v Build Plans

v Mapping

v Renaming

v Execution

Build Plans page

The Build Plans page enables you to specify information about where the

migration plan is to be placed. The Build Plans page also enables you to indicate

which configuration maps and versions in the library you want to consider for

migration. The Build Plans page is organized in the following sections:

v Migration Plan Specification information identifies where the Stage 1 migration

tool is to read or write the migration plan file (or files).

Chapter 5. Stage 1 — Extracting from Smalltalk 137

– Plan Directory. This is the target directory where you want your migration

plan file (or files) to be placed.

– Plan File Name. An optional file name of the migration plan file you are

creating and using to load the migration database. You can click the Plan File

Name button to view existing plan files in your plan directory. If you need to

see details within a plan file, click the View Plans button and expand the

plan file to see the migration sets.

- If you do not specify a Plan file name, the migration tool deletes all the

.pln files in the specified Plan directory before creating new plan files. The

migration tool creates one plan file for each migration set. In this case, the

migration Plan file names are of the form migrationSetName_version.pln.

- If you specify a Plan file name, the migration tool deletes only the specified

.pln file from the specified Plan directory before creating a new .pln file

with your specified Plan file name. In this case, the single Plan file lists all

the migration sets.
v Repository Filters information enables you to control which configuration maps

and versions in your Smalltalk library are considered by the Stage 1 migration

tool. Limiting the configuration maps and versions can greatly enhance the

performance of the Stage 1 migration tool. You can specify multiple filters. The

Stage 1 migration tool uses the Configuration Maps filter and the Version Name

or Version Depth filters as follows:

– The migration tool matches each configuration map name in the library

against the Configuration Maps filter.

- If the configuration map name does not match at least one of the

Configuration Maps filters, the configuration map is not considered for

further processing.

- If the configuration map name matches at least one of the Configuration

Map filters, the versions of the configuration map are processed as follows:

v If you specified any Version Name filters, then each version name for the

configuration map is matched against the list of Version Name filters. If

the version name matches any of the Version Name filters, then the

version is considered for further processing.

v If you specified the Version Depth filter and did not specify any Version

Name filters, then the most recent versions of the configuration map, up

to the number specified by the Version Depth filter, are considered for

further processing. The default Version Depth filter is 1.

Note: Version Depth and Version Name are mutually exclusive. By

default, the Version Depth filter is included in the

MigPreferences.xml file.
– If the configuration map name and version name result in the configuration

map version being considered for further processing, the Stage 1 migration

tool does the following:

- If the configuration map version is a high-level configuration map, then the

migration tool uses the configuration map version as the basis for creating

a migration set. Each version of the high-level configuration map results in

a different migration set, assuming the version name matched the version

filter.

- If the configuration map version is not a high-level configuration map, the

configuration map version is not considered for further processing. The

configuration map version might still be included in other migration sets;

there just will not be a migration set specifically for this configuration map

version.

138 Rational Software Development Platform: VisualAge Generator to EGL Migration Guide

Specify the Repository Filter information as follows:

v Configuration Maps filter. The migration tool matches the configuration map

names in your library to the Configuration Maps filter that you specify. You can

specify multiple Configuration Maps filters. To add, change, or remove filters,

right-click on a filter and use the options on the context menu. The filters are not

case sensitive. You can use wildcards in the filters as follows:

– A configuration map filter of *xyz* matches any configuration map name in

the library that has the string ″xyz″ anywhere in its name.

– A configuration map filter of xyz* matches any configuration map name in

the library that begins with ″xyz″.

– A configuration map filter of *xyz matches any configuration map name in

the library that ends with ″xyz″.
v Version Name filter. If a configuration map name matches the Configuration

Maps filter, the migration tool uses the Version Name filter to determine which,

if any, of the configuration map versions should be considered for migration.

You can specify multiple Version Name filters. To add, change or remove filters,

right-click on a filter and use the options on the context menu. The filters are not

case sensitive. You can use wildcards in the filters as follows:

– A version name filter of *xyz* matches any configuration map version name

that has the string ″xyz″ anywhere in the version name.

– A version name filter of xyz* matches any configuration map version name

that begins with ″xyz″.

– A version name filter of *xyz matches configuration map version name that

ends with ″xyz″.

– If you leave the Version Name filters field empty, the migration tool uses the

Version Depth filter.
v Version Depth filter. You can specify the number of previous versions you want to

migrate. The default is 1, in which case the migration tool only processes the

most recent version of the configuration map. If any Version Name filters are

specified, the Version Depth filter is ignored.

Mapping page

The Mapping page enables you to specify the following:

v EGL file names for common parts and for unused parts.

v Suffixes that are used in building EGL project and package names.

v Options that control how your application names are converted to EGL package

names.

v Information about which VAGen configuration maps and applications contain

common parts.

The following describes the preferences on the Mapping page in more detail:

v File Names. The File Names section enables you to control the names of two EGL

files that are created during migration.

– Common Parts enables you to specify the name of an EGL file to contain parts

that are common to multiple unique generatable parts within the scope of the

migration set. Specify the file name without an extension or path. The

migration tool creates a common parts file in each EGL package that contains

parts that are used by (associated with) multiple generatable parts in the

migration set or which are in VAGen configuration maps or applications that

are identified as common configuration maps or applications. See “Placing

Chapter 5. Stage 1 — Extracting from Smalltalk 139

parts in EGL files” on page 38 for details about whether a part is placed with

in a file with a program or in the Common Parts file.

– Unused Parts enables you to specify the name of an EGL file to contain parts

that are not used within the scope of the migration set. Specify the file name

without an extension or path. The migration tool creates an unused parts file

in each EGL package that contains parts that are not used by (associated

with) any generatable part in the migration set, provided the corresponding

VAGen configuration map and application are not identified as common

configuration maps or applications.
v Spanning Maps. The Spanning Maps section enables you to specify suffixes that

are used in the event that one of your map groups includes maps from multiple

configuration maps or applications.

– Project Suffix enables you to specify a suffix that the Stage 1 migration tool

concatenates to the migration set name to create a new EGL project name. The

migration tool only creates this new EGL project if a map group and its maps

are spread across multiple VAGen configuration maps within the migration

set. The migration tool concatenates the suffix to the migration set name after

any Renaming rules are applied.

– Package Suffix enables you to specify a suffix that the Stage 1 migration tool

concatenates to a project name to create a new EGL package name within the

EGL project. The migration tool only creates this new EGL package if a map

group and its maps are spread across multiple VAGen applications within a

configuration map. The migration tool concatenates the suffix after any

Renaming rules are applied to create the EGL project name.
v EGL Package Naming Options. The EGL Package Naming Options section enables

you to specify general rules about converting Smalltalk application names to

Java package names.

– Use package naming dot notation. If you select this option, the migration tool

converts VAGen application names to EGL package names by placing a dot

before each uppercase letter in the application name after the first. For

example, if you select this option, the migration tool changes

MyOrderEntryApp to My.Order.Entry.App.

– Collapse subapplications. If you select this option, the migration tool converts

each VAGen subapplication to an EGL package. If you deselect this option,

the migration tool converts the subapplication using dot notation. Consider

the situation in which there is an application named MainApp that contains a

subapplication named SubApp. If you select Collapse subapplications, the

migration tool creates two packages--one named MainApp and one named

SubApp so that both packages are at the same level in the EGL folder

structure. If you deselect Collapse subapplications, the migration tool also

creates two packages, but they are named MainApp and MainApp.SubApp so

that the two packages appear in a hierarchy in the EGL folder structure. The

default is selected.

– Convert package names to lowercase. If you select this option, the migration tool

converts VAGen application names to EGL package names by changing

uppercase letters to lowercase. For example, if you select this option, the

migration tool changes MyOrderEntryApp to myorderentryapp.

In general, you should select both options. If both are selected, the migration

tool changes MyOrderEntryApp to my.order.entry.app. The EGL Package

Naming Options are applied after any Renaming rules.

v Common Identifiers. This section enables you to specify a list of strings with

wildcards that the migration tool can use in determining which configuration

maps and applications contain common (shared) parts. To add or delete a

140 Rational Software Development Platform: VisualAge Generator to EGL Migration Guide

common identifier, right click on the field and use the options on the context

menu. When you add an identifier, the editor prompts you to enter the

following information:

– context indicates whether the string is to be matched to the configuration map

name, application name, or both.

- ConfigMap enables you to specify a string that identifies configuration maps

that contain common parts. The migration tool matches this string to each

configuration map name in the migration set to determine if the

configuration map contains common parts. If the configuration map name

matches any of the strings, all parts within the configuration map are

considered to be ″used″. Each non-generatable part will either be placed in

a program file or in the file specified by your Common Parts File Name

preference; the part will not be placed in the unused parts file even if the

part is not used by any generatable part in the migration set. You can enter

multiple ConfigMap strings.

- Application enables you to specify a string that identifies applications that

contain common parts. The migration tool matches this string to each

application name in the migration set to determine if the application

contains common parts. If the string matches an application name, all parts

within the application are considered to be ″used″. Each non-generatable

part will either be placed in a program file or in the file specified by your

Common Parts File Name preference; the part will not be placed in the

unused parts file even if the part is not used by any generatable part in the

migration set. You can enter multiple Application strings.

- Both enables you to specify a string that the migration tool matches to both

configuration map names and application names within the migration set.

Both is equivalent to specifying the same string with a context of ConfigMap

and a context of Application.
– Pattern to identify the common code enables you to specify the string the

migration tool should match based on the context you specified. You can use

the * as a wildcard at either the beginning or end of the string. The filters are

not case sensitive.

Renaming page

The Renaming page enables you to control the names of the EGL projects,

packages, and versions that are derived from your VAGen configuration map,

application, and version names. The number in the Order column indicates the

order in which the migration tool is to apply the renaming rules, with the lowest

numbered rule applied first. To add or delete a renaming rule, click on a rule and

use the options on the context menu. Add Rule always puts the new rule at the

end of the list. When you add a rule, the editor prompts you to enter the following

information:

v from string specifies the characters in the VAGen name that you want to change.

v to string specifies the characters you want to use in the resulting EGL name.

v string context specifies the location in the VAGen name where the migration tool

should look for the from string during renaming. The values are as follows:

– front means the rule applies if the from string appears at the beginning of a

configuration map, application, or version name.

– back means that the rule applies if the from string appears at the end of a

configuration map, application, or version name.

– any means that the rule applies if the from string appears anywhere within a

configuration map, application, or version name.

Chapter 5. Stage 1 — Extracting from Smalltalk 141

– token means that the rule applies only if the from string is an exact match for

the configuration map, application, or version name.
v mapping context indicates whether the migration tool is to apply the renaming

rule to a configuration map, application, or version name. The values for

mapping context are as follows:

– configMap means that the renaming rule only applies to VAGen configuration

map names.

– application means that the renaming rule only applies to VAGen application

names.

– both means that the renaming rule applies to both VAGen configuration map

names and VAGen application names.

– version means that the renaming rule applies to the version names for all

configuration maps. Use a version renaming rule if your version names

include special characters such as a semicolon (:) that are not permitted in

directory or file names. The default MigPreferences.xml file includes several

version renaming rules to help ensure that your version names do not result

in invalid directory or file names. The migration tools use the renamed

versions to create the migration plan file names in Stage 1 and to create

directory names in Stage 3 of migration.

Execution page

The Execution page enables you to specify information about the location of the

migration database, as well as the logging, debug, and report information you

want to capture during Stage 1. The following describes the preferences you can

specify on the Execution page in more detail:

v Database information. This section enables you to specify details about the

migration database:

– DB is the name of the migration database into which the migration tool is to

write the migration set information. If you changed the database name from

VGMIG when you created the migration database, you must change the

database name specified by this preference to match the name you used.

– Schema is the name used as the qualifier for the database tables. If you do not

specify the schema, the migration tool uses MIGSCHEMA as the default. If

you changed the schema name from MIGSCHEMA when you created the

migration database, you must change the schema name specified by this

preference to match the name you used.

– Userid is the user ID needed to connect to the migration database. If you not

specify the Userid, the migration tool attempts to connect using the user ID

specified in your VAGen SQL Preferences as the default. If the connection

fails, the migration tool attempts to use your logon user ID. If both attempts

fail, the migration tool displays a dialog window asking for the information.

– Password is the password needed to connect to the migration database. If you

not specify the password, the migration tool attempts to connect using the

password specified in your VAGen SQL Preferences as the default. If the

connection fails, the migration tool attempts to use your logon password. If

both attempts fail, the migration tool displays a dialog window asking for the

information.

Note: The password is not encrypted in the preferences file. If this is a

concern, do not enter the password in the preferences file. Wait for the

prompt.

142 Rational Software Development Platform: VisualAge Generator to EGL Migration Guide

v Service information. This section enables you to specify details about the logging

and debug information you want to capture during Stage 1. You can specify the

following:

– Trace Level enables you to specify the level of information that you want to

write to the log and debug files. You can specify one of the following values:

- FATAL (Level 1) -- Error messages are logged.

- WARN (Level 2) -- Warning messages and error messages are logged.

- INFO (Level 3) -- Informational, warning, and error messages are logged.

- DEBUG (Level 4) -- Debug information, as well as informational, warning,

and error messages are logged. DEBUG is the only trace level that causes

the migration tool to write information to the debug file.
– Log File Name enables you to specify the drive, directory, and file name for a

log file. You can create the log file with any file extension, but it is best

viewed as an .xml file. If you omit the log file name, a file named migLog.xml

is written to the drive and directory that you specified in the Log File Name

field. If you do not specify a drive and directory, the migration tool writes the

log file to the migration plan directory.

– Debug File Name enables you to specify the drive, directory, and file name for

a debug file that might be needed by IBM support. You can create the debug

file with any file extension, but it is best viewed as an .xml file. Information is

only written to this file if the Trace Level preference is set to DEBUG. If you

omit the debug file name and you specify a Trace Level of DEBUG, a file

named migDebug.xml is written to the drive and directory that you specified

in the Debug File Name field. If you do not specify a drive and directory, the

migration tool writes the debug file to the migration plan directory.
v Verification information. This section enables you to specify information about

the report file that can be output from the Stage 1 migration tool. You can

specify the following:

– Report File Name enables you to specify the drive, directory, and file name to

be used for the report file. This report contains information about how your

VAGen files are going to be migrated. You should always specify the .htm

extension. If you omit the report file name, a file named report\
MigrationReport.htm is written to the drive and directory that you specified in

the Report File Name field. If you do not specify a drive and directory, the

migration tool writes the report file to the migration plan directory.

Sample MigPreferences.xml file

The following is a sample MigPreferences.xml file:

<preferences>

 <database>

 <uri>VGMIG</uri>

 <schema>MIGSCHEMA</schema>

 <userid></userid>

 <password></password>

 </database>

 <migrationSpec>

 <directory>d:\TempMig\Stage1</directory>

 <filename></filename>

 </migrationSpec>

 <service>

 <traceLevel>4</traceLevel>

 <logfile>d:\TempMig\stage1\migLog.xml</logfile>

 <debugfile>d:\TempMig\stage1\migDebug.xml</debugfile>

 </service>

 <repositoryFilters>

 <projectName>MyConfigMap*</projectName>

Chapter 5. Stage 1 — Extracting from Smalltalk 143

<versionNumber>1</versionNumber>

 </repositoryFilters>

 <verification>

 <reportName>d:\TempMig\report\MigrationReport.htm</reportName>

 </verification>

 <eglMapping>

 <commonPartsFileName>CommonParts</commonPartsFileName>

 <unusedPartsFileName>UnusedParts</unusedPartsFileName>

 <spanningMapsProjectSuffix>MapsProject</spanningMapsProjectSuffix>

 <spanningMapsPackageSuffix>mapspackage</spanningMapsPackageSuffix>

 <packageDotNotation>true</packageDotNotation>

 <collapseSubapplications>true</collapseSubapplications>

 <packageLowercase>true</packageLowercase>

 <commonParts>

 <commonConfigMap>*Common*</commonConfigMap>

 <commonApplication>*Common*</commonApplication>

 </commonParts>

 <renameRule order="1">

 <fromString> </fromString>

 <toString></toString>

 <stringContext>any</stringContext>

 <mappingContext>both</mappingContext>

 </renameRule>

 <renameRule order="101">

 <fromString>CM</fromString>

 <toString></toString>

 <stringContext>back</stringContext>

 <mappingContext>configMap</mappingContext>

 </renameRule>

 <renameRule order="301">

 <fromString>App</fromString>

 <toString></toString>

 <stringContext>back</stringContext>

 <mappingContext>application</mappingContext>

 </renameRule>

 <renameRule order="501">

 <fromString>:</fromString>

 <toString>_</toString>

 <stringContext>any</stringContext>

 <mappingContext>version</mappingContext>

 </renameRule>

 <renameRule order="502">

 <fromString>/</fromString>

 <toString>_</toString>

 <stringContext>any</stringContext>

 <mappingContext>version</mappingContext>

 </renameRule>

 <renameRule order="503">

 <fromString>\</fromString>

 <toString>_</toString>

 <stringContext>any</stringContext>

 <mappingContext>version</mappingContext>

 </renameRule>

 <renameRule order="504">

 <fromString>|</fromString>

 <toString>_</toString>

 <stringContext>any</stringContext>

 <mappingContext>version</mappingContext>

 </renameRule>

 <renameRule order="505">

 <fromString>?</fromString>

 <toString>_</toString>

 <stringContext>any</stringContext>

 <mappingContext>version</mappingContext>

 </renameRule>

 <renameRule order="506">

 <fromString>*</fromString>

144 Rational Software Development Platform: VisualAge Generator to EGL Migration Guide

<toString>_</toString>

 <stringContext>any</stringContext>

 <mappingContext>version</mappingContext>

 </renameRule>

 <renameRule order="507">

 <fromString><</fromString>

 <toString>_</toString>

 <stringContext>any</stringContext>

 <mappingContext>version</mappingContext>

 </renameRule>

 <renameRule order="508">

 <fromString>></fromString>

 <toString>_</toString>

 <stringContext>any</stringContext>

 <mappingContext>version</mappingContext>

 </renameRule>

 <renameRule order="509">

 <fromString>"</fromString>

 <toString>_</toString>

 <stringContext>any</stringContext>

 <mappingContext>version</mappingContext>

 </renameRule>

 <renameRule order="510">

 <fromString> </fromString>

 <toString>_</toString>

 <stringContext>any</stringContext>

 <mappingContext>version</mappingContext>

 </renameRule>

 </eglMapping>

</preferences>

Deriving file names from your preferences

The Stage 1 migration tool derives the file names for the log, debug, and report file

names in the same way. The following table shows a name you as you might

specify it in the preferences and the resulting drive, directory and path name that

the migration tool uses. In this example, the Migration Plan Directory is

d:\myVAGenMig.

 Table 60. File name derived from preferences

Log File Name Preference File Name used by Stage 1 Migration Tool

Preference is left blank. d:\myVAGenMig\migLog.xml

Note:

v The default file name for the debug file is migDebug.xml.

v The default file name for the report file is \report\MigrationReport.xml

mine.xml d:\myVAGenMig\mine.xml

logs\mine.xml d:\myVAGenMig\logs\mine.xml

.mine.xml VisualAge-Generator-installation-directory\image\mine.xml

Before you run the Stage 1 tool — hints and tips

Before you run the Stage 1 migration tool, there are some things you might want

to do to improve performance. You might also want to save your existing image

for use after migration is completed.

Chapter 5. Stage 1 — Extracting from Smalltalk 145

Improving performance

To minimize the memory usage, it is best to clean up (or ″scrub″) the image before

running the Stage 1 migration tool. To clean up (or ″scrub″) the image, do the

following:

1. From the System Transcript, select Tools —> Open VAGen Tools Workspace.

2. Under the ″Image Management″ section, swipe through:

System abtScrubImage

3. Then right-click and select Execute to run System abtScrubImage.

4. If you scrub the image, you might need to reload the VAGen EGL Migration

feature. See “Loading the migration feature” on page 136 for information on

how to load the feature. Alternatively, to add the EGL Migration Tools option

back onto the System Transcript tool bar, do the following:

a. Type the following into the System Transcript window:

HptEglMigrationGuiApp loaded

b. Swipe through the line you typed, then right-click and select Execute.

To reduce the time the Stage 1 migration tool spends analyzing which

configuration maps and versions to migrate, consider creating a library that only

contains the configuration map versions that you want to migrate. If you have

ongoing maintenance in VisualAge Generator while you are migrating, a separate

migration library also has the following advantages:

v There is a stable set of configuration map versions to migrate. This is

particularly important if you use the Version Depth preference to control what is

to be migrated.

v You can compare the versions in the new migration library against your

maintenance library to determine what additional configuration map versions

still need to be migrated.

If you do create a special library, consider using it as a local library to improve

Stage 1 migration performance.

Saving your image

The Stage 1 migration tool unloads all applications that contain VAGen parts from

your image at the beginning of Stage 1 processing. Only the last migration set to

be processed is left in your image when the Stage 1 tool finishes. Unloading all

applications ensures that only parts in the migration set are considered for the

associate parts list during Stage 1. If you have an image that you wish to save, you

should do the following before running the Stage 1 tool:

1. Shut down VisualAge Generator.

2. Save backup copies of the following files in your \VisualAgeForSmalltalk-
installation-directory\image:

v abt.icx

v abt.ini — not necessary to save if you do not change any preferences while

running Stage 1

v hpt.ini — not necessary to save if you do not change any preferences while

running Stage 1
3. Start VisualAge Generator.

When you are finished running the Stage 1 tool, do the following to restore your

workspace:

1. Shut down VisualAge Generator.

146 Rational Software Development Platform: VisualAge Generator to EGL Migration Guide

2. Restore the files you backed up before running the Stage 1 tool.

3. Start VisualAge Generator.

Running the Stage 1 migration tool

After you have finished editing your preferences, you are ready to run the Stage 1

migration tool to extract your source code from the Smalltalk library. To do this,

perform the following steps:

1. Start the EGL Migration Driver View using one of the following techniques:

a. If you modified the preferences by starting the Preferences Editor, start the

EGL Migration Driver View from the System Transcript by selecting EGL

Migration Tools -> Migration Driver.

b. If you modified the preferences by starting the EGL Migration Driver, then

when you saved the preferences file, you are positioned back at the EGL

Migration Driver View.
2. Ensure the File Name for the Migration Preference File points to the file in

which you stored your preferences. Use the Browse... button to point to a

different preferences file. Use the Edit... button to review or make final

modifications to your preferences.

3. When you are satisfied with your preferences, select the Execution Options that

you want to use. The Execution Options control the output of the Stage 1

migration tool as follows:

v Overwrite PLN controls the migration plan file or files as follows:

– If you select Overwrite PLN, the Stage 1 migration tool does the following

to files in the Plan Directory that you specified in your preferences:

- If your preferences file does not specify a file name for your .pln file,

the migration tool deletes all the .pln files in the specified Plan

Directory and creates new files.

- If your preferences file specifies a file name for your .pln file, the

migration tool only deletes a file with the same name from the specified

Plan Directory before creating a new .pln file.

Select the Overwrite PLN option if you want the Stage 1 migration tool to

create the migration plan files for you based on your repository filters and

high-level configuration maps. If you need assistance creating a

configuration map to use for migration, see “Creating a high-level

configuration map” on page 150.

– If you do not select Overwrite PLN, the Stage 1 migration tool does not

create any new migration plan files. Instead, the Stage 1 migration tool

runs based on the Plan Directory and Plan File Name you specified in

your preferences:

- If your preferences file does not specify a file name for your .pln file,

the migration tool runs using all of the plans in the specified Plan

Directory.

- If your preferences file does specify a file name for your .pln file, the

migration tool runs using only that .pln file.

Deselect the Overwrite PLN option if you have previously created the

migration plan files and now want to run the Stage 1 migration tool to

load the migration database using these files. For details about creating

your own migration plan files, see “Creating a migration plan file

manually” on page 151.
v Generate Report controls whether the migration tool creates the report

specified in the Verification section of the preferences file. If you do not select

Chapter 5. Stage 1 — Extracting from Smalltalk 147

this option, the report is not created. If you select this option, the migration

tool creates the report using the Report File Name that you specified in your

preferences. The report shows how your configuration maps, applications,

and VAGen parts will be assigned to EGL projects, packages, and files during

migration. You might deselect this option initially so that you can review the

.pln files to ensure that the migration tool is planning to process the

configuration map versions that you want. If you are not satisfied with the

configuration map versions that are being selected, you can refine your

preferences and run Overwrite PLN again. When you are satisfied with the

configuration map versions that will be processed, run Stage 1 again with the

Generate Report option selected.

Note:

– Generating the report can take some time, therefore it is best to

review the .pln files to be sure that the migration tool will process

the configuration map versions that you intend.

– If you select the Generate Report option, the Stage 1 migration tool

automatically deletes any existing report files from the report

directory. If you want to save previous report files, you must move

the report files to a different directory or point to a new directory

for your new report. Because the report files link to other files,

renaming the report files will cause links to be lost and the files to

become unviewable.
v Update Database controls whether the migration tool updates the migration

database with the migration plan information. If you do not select this

option, the migration database will not be updated. If you select this option,

the migration database you specified in your preferences will be updated

with information from the migration plan, including the External Source

Format for every VAGen part in the migration plan. You might deselect this

option initially so that you can review the report to see how your

configuration maps, applications and VAGen parts will be placed into EGL

projects, packages, and files. If you are not satisfied with the placement, you

can refine your preferences and run the report again. When you are satisfied

with the placement, you can run Stage 1 a final time with Update Database

selected so that the migration tool will put the results into the migration

database.

Note:

– If you select the Update Database option and a migration set

already exists in the database, the Stage 1 migration tool

automatically deletes the old information about migration set from

the database and then adds the new information for the migration

set. There is no need for you to clean up a migration set from the

database.

– The migration tool does not automatically clean up an entire

migration plan.
4. After you have selected your Execution Options, click OK to run Stage 1 of the

migration tool. The migration tool writes messages to the log file you specified

in your migration preferences. The tool also puts the same messages in the

System Transcript.

When the Stage 1 tool finishes, if you selected the Update Database option, your

migration plan information, including your VAGen code in External Source

Format, is stored in the migration database. After reviewing your report and the

148 Rational Software Development Platform: VisualAge Generator to EGL Migration Guide

Stage 1 messages, you might decide to make changes to your code in VisualAge

Generator and run Stage 1 again. After you are satisfied with the results of Stage 1

and have your final External Source Format code stored in the migration database,

you are ready to perform Stage 2 of the migration. To run the Stage 2 migration

tool, you use the EGL development environment. See Chapter 6, “Stage

2—Conversion to EGL syntax,” on page 155 for information about continuing your

migration process.

Migration plans and high-level configuration maps

A migration plan file is simply an XML file that specifies the names of one or more

migration sets and, for each migration set, one high-level configuration map and

version that specifies the applications and their versions for the migration set. The

high-level configuration map can also specify other configuration maps and their

versions as required maps. However, only one high-level configuration map

version can be specified for a migration set. The Stage 1 migration tool is designed

to automatically create a migration plan file for you based on your Repository

Filters preferences for configuration map and version names. The Stage 1 tool uses

these filters to select the configuration map versions that should be reviewed to

determine which ones are high-level configuration map versions. The Stage 1 tool

uses each high-level configuration map version as the basis for a migration set.

If you use high-level configuration maps when generating your VAGen source

code, then these high-level configuration maps are the same ones you should use

for migration. This is because each high-level configuration map provides a

grouping of parts that are used together during generation and therefore has all

the associated parts for a set of programs.

If you do not currently use configuration maps at all, you must create a

configuration map to use for migration. In this situation, the easiest technique is to

create one configuration map version that includes all the application versions,

including common application versions, that you want to migrate as a group. See

“Creating a high-level configuration map” on page 150 for details. After you have

created the configuration map, you can use the Stage 1 migration tool to

automatically create the migration plan for you.

If you currently use configuration maps, you might not have high-level

configuration maps. For example, you might have a configuration map for

common applications and another configuration map for a subsystem. At

generation time you determine which version of each configuration map to load

into your image. In this situation, you can do one of the following to specify what

you want to migrate as a group:

v Create a high-level configuration map to use during migration. This high-level

configuration map can specify a list of application versions, a list of required

configuration map versions, or a combination of application versions and

required configuration map versions. For example, the high-level configuration

map can list the common configuration map and the subsystem configuration

map so that both configuration maps will be considered as a group when

migrating. See “Creating a high-level configuration map” on page 150 for

details. After you have created the high-level configuration map, you can use the

Stage 1 migration tool to automatically create the migration plan for you.

v If you prefer not to create a high-level configuration map, you can create the

migration plan file yourself using one of the following techniques:

Chapter 5. Stage 1 — Extracting from Smalltalk 149

– If you have information in a database or other system that specifies what is

needed for generation in terms of Smalltalk configuration map versions, then

you can write a tool to create the migration plan file or files automatically

from your database.

– Create the migration plan file or files manually.

Creating a high-level configuration map

To create a high-level configuration map for use in migration do the following in

VisualAge Generator:

1. From the VisualAge Organizer, select Options and be sure that Full Menus is

selected.

2. From the VisualAge Organizer, select Tools -> Configuration Maps.

3. From the Configuration Maps Browser, select Names -> Create.

4. In the Information Required window, enter the name of the configuration map

and then click on OK. A new edition of the configuration map is automatically

created and selected.

5. Select Applications -> Add. Then select each application that you want to

migrate and the version of that application. You can only specify one version

for each application. Click OK when you have selected the version for each

application that you need to include. The application versions that you specify

will be migrated as a group. This group determines the set of parts that the

migration tools use to resolve ambiguous situations.

6. Version the configuration map by selecting Editions -> Version.

7. Select the configuration map version and load it into your image by selecting

Editions -> Load.

8. After you have loaded your new high-level configuration map, you might also

want to validate your programs and tables to ensure that they are valid in

VAGen and that you are not missing any parts. When you validate your

programs, include /GENMAPS, /GENHELPMAPS, and /NOGENTABLES.

These 2 map options enable you to ensure that the maps are valid for the

programs in which they are used. /NOGENTABLES enables you to validate a

table just one time rather than revalidating the table with every program in

which the table is used.

Chaining configuration maps

You can chain configuration maps. For example, you can create a configuration

map that lists the version for each of your common applications. Then, for each

subsystem, create a high-level configuration map for that subsystem that includes

the version you need of each subsystem-specific application. You can include the

configuration map for the common applications in the subsystem configuration

map as follows:

1. From the Configuration Maps Browser, select an open edition of the subsystem

configuration map.

2. Select Expressions -> Add.

3. In the Information Required window, click OK to accept true as the expression.

4. Select true in the Config. Expressions pane. Then select Required Maps -> Add

-> As First. Then select the configuration map version that contains the

common applications.

5. Version the configuration map by selecting Editions -> Version.

6. Select the configuration map version and load it into your image by selecting

Editions -> Load With Required Maps.

150 Rational Software Development Platform: VisualAge Generator to EGL Migration Guide

Using required maps provides a simple way of specifying the common application

versions without having to explicitly list the common application versions in every

subsystem’s high-level configuration map.

Using configuration maps with the Stage 1 tool

When you are ready to run the Stage 1 migration tool, do the following:

v When you set your Stage 1 preferences, on the Build Plans page, in the

Repository Filters section, set the Configuration Maps list so that a filter in the

list matches the high-level configuration map you created.

v When you instruct the Stage 1 tool which preferences file to use, also select the

Overwrite PLN option. This option instructs the Stage 1 migration tool to create

the migration plan files for you based on your high-level configuration maps

and to overwrite any existing migration plan files.

Creating a migration plan file manually

If you already have external controls that determine what configuration map

versions to load into your image when you generate in VisualAge Generator, you

might decide to create the migration plan file by hand or to develop a tool to

create the migration plan file automatically from your external information. The

migration plan file must have a .pln file extension and the following format:

<migrationDefinition>

 <migrationSet

 name="migrationSet1"

 version="migrationSet1Version1"

 vgName="migrationSet1"

 vgVersion="migrationSet1Version1">

 <configMap

 name="configurationMap1"

 version="configurationMap1Version1">

 </configMap>

 <configMap

 name="configurationMap2"

 version="configurationMap2Version1">

 </configMap>

 .

 .

 .

 <configMap

 name="configurationMapN"

 version="configurationMapNVersion1">

 </configMap>

 </migrationSet>

</migrationDefinition>

In the previous example, the following apply:

v migrationSet1 is a name that you can use to refer to a group of configuration

maps that must be migrated together. The migration set name is stored in the

migration database and is used in the later stages of migration as follows:

– In Stage 1 migration, if maps in a map group span configuration maps, the

migration set name concatenated with a suffix is used to build the name of a

new EGL project that will contain the map group and all its maps. The

migration set name is also used to remove information from the migration

database if you change renaming rules.

– In Stage 2 migration, the migration set name specifies which group of

configuration maps in the migration database that you want to convert to

EGL.

– In Stage 3, the migration set name specifies which group of configuration

maps in the migration database you want to use to create EGL projects,

Chapter 5. Stage 1 — Extracting from Smalltalk 151

packages, and files in your workspace or in a temporary directory. The

migration set name and the migration set version are also used to create the

high-level directory name if you choose to save the outputs of Stage 3 to a

temporary directory.

The migration set name is only used during migration as a way of identifying a

group of configuration maps. Other than the situation in which maps span

multiple configuration maps in VisualAge Generator, the migration set name is

not used after migration.

v configurationMap1, configurationMap2, ... configurationMapN are the

configuration maps you want to migrate as a group. You must only list a

configurationMap once within a migration set.

v configurationMap1Version1, configurationMap2Version1, ...

configurationMapNVersion1 are the respective versions of each of these

configuration maps. You can only specify one version for each configuration

map within a migration set.

v The configuration map names and version names you specify must exactly

match the configuration map names and version names in your library. The

names are case sensitive. The information is used to add configuration map

versions to the image so that the parts can be analyzed to build the Stage 1

migration report and to load the migration database.

When you are ready to run the Stage 1 migration tool, do the following:

v When you set your Stage 1 preferences, on the Build plans tab, set the Plan

directory name to the drive and directory where you stored your migration plan

files. Specify the Plan file name if you want the Stage 1 migration tool to run

only one migration plan that you have created. Leave the Plan file name blank

if you want the Stage 1 migration tool to run using all the migration plan files

in the specified Plan directory.

v When you instruct the Stage 1 tool which outputs to produce, be sure to deselect

Overwrite PLN. This causes the migration tool to run using the previously

created .pln file based on your Plan file name preference.

152 Rational Software Development Platform: VisualAge Generator to EGL Migration Guide

Part 4. Stages 2 and 3 — common migration steps

The remaining steps of the migration are the same whether you are migrating from

VisualAge Generator on Java or VisualAge Generator on Smalltalk.

© Copyright IBM Corp. 2004, 2006 153

154 Rational Software Development Platform: VisualAge Generator to EGL Migration Guide

Chapter 6. Stage 2—Conversion to EGL syntax

Stage 2 of migration is the same whether you are migrating from Java or Smalltalk.

You must run another migration tool to convert your source from External Source

Format syntax to EGL syntax. This migration tool is a plug-in that is available after

you install EGL. You can run the tool in batch mode or interactive mode. You can

optionally specify that Stage 3 is to run automatically after Stage 2 completes.

Setting DB2 performance information

After you run Stage 1 and before you run Stage 2, you should use the DB2

runStats command to evaluate and set performance information for the DB2 tables.

To set the performance information, do the following:

1. From a DB2 Command Window, navigate to the directory where runStats.bat is

located.

v For Java, this is VisualAge-for-Java-install-directory\ide\vgmigration

v For Smalltalk, this is VisualAge-Smalltalk-install-directory

2. If you changed the default migration database name (VGMIG) or the default

schema name (MIGSCHEMA), change the runStats.bat file to use your

database name and schema name.

3. Run runStats.bat.

Setting your workbench preferences

Before you start to migrate you should set your workbench preferences. This

includes the following:

v Start up parameters

v Required EGL preferences

v Recommended preferences

v VAGen Migration Preferences

v Other recommended settings

Start up parameters

To improve the performance of the EGL development environment, you should set

several start up parameters in the initialization file. The parameters are the same

regardless of the product that you use. The initialization file is always in the

product installation directory, but the name of the file varies with the product that

you are using. For example, if you are using Rational Application Developer, the

initialization file is named rationalsdp.ini. To set the start up parameters, do the

following:

1. Using a text editor, edit the initialization file.

2. Look for the following line:

VMArgs=-Xj9

3. Change the line to the following three lines:

VMArgs=-Xj9

VMArgs=-Xmx700m

VMArgs=-Xms256m

© Copyright IBM Corp. 2004, 2006 155

Setting -Xmx increases the available memory. Generally, set this to a value that

is less than your real memory. For example, if your real memory is 1000K, then

set -Xmx to 700. This helps avoid the use of virtual memory.

Setting -Xms increases the amount of memory that is used when starting the

product. Set this to a value that is less than or equal to your setting for -Xmx.

4. Save the initialization file.

5. Start the EGL development environment. For example, if you are using Rational

Application Developer, start that product.

Required EGL preferences

Before you can you use the migration tool, you must enable both the EGL and the

migration tool capabilities. To enable these capabilities, do the following:

v From the Workbench window, select Window -> Preferences.

v Expand the Workbench preference by selecting the + beside it and then select

Capabilities.

v Expand EGL Developer. Then select both EGL Development and VisualAge

Generator to EGL Migration. You do not need to select the other migration

tools.

v Select OK.

You must also set the VisualAge Generator compatibility mode before you migrate.

Setting the VisualAge Generator compatibility mode avoids numerous messages in

the Problems view. To set this preference, do the following:

v From the Workbench window, select Window -> Preferences.

v Select EGL.

v Select the VisualAge Generator Compatibility preference.

v Select OK.

v When you are prompted for a full-rebuild of the workspace, select OK.

If you plan to migrate VAGen Web transaction programs, you should set the type

of EGL Web project. To set this preference, do the following:

v From the Workbench window, select Window -> Preferences.

v Select EGL.

v In the Default EGL Web Project Feature Choices, do the following:

– Deselect EGL support with JSF.

– Select EGL support with Legacy Web Transaction.
v Select OK.

Recommended preferences

The following preferences are recommended to assist you in resolving any EGL

validation messages in the Problems view. From the Workbench window, select

Window -> Preferences and then the preference page indicated below as follows:

v EGL -> Editor. Select Show line numbers.

v Workbench -> Editors -> Text Editor. Select Show line numbers.

v Workbench page. Decide whether to select or deselect Build automatically. If

you select this option, whenever you save a file, EGL rebuilds everything in the

workspace and runs validation. The advantage of selecting the option is that you

get immediate feedback on the changes you have made. The disadvantage is

that rebuilding can take some time depending on the number of parts in your

workspace. If you do not select this option, EGL does not rebuild anything when

156 Rational Software Development Platform: VisualAge Generator to EGL Migration Guide

you save a file. The advantage of deselecting the option is that you avoid

multiple rebuilds when you are modifying a number of files. However, you

must remember to rebuild the projects (Project -> Build Project or Project ->

Build All) to see the results of any changes on the messages in the Problems

view. You might want to deselect Build automatically while you are working

through the list of messages in the migration log. This enables you to control

when the rebuild occurs. When you are doing normal code development, then

you might want to select this option. The Stage 3 Migration Tool always turns

off Build automatically.

v Workbench -> Local History. The .egl files that are produced by the migration

tool can be quite large. Therefore, you should change the Maximum file size

(MB) to a larger value (for example, 5). In addition, you might want to change

the Days to keep files and the Entries per file based on your backup

requirements.

v Workbench -> Perspectives. You might want to set either the EGL perspective or

the Web perspective as your default perspective. Use the EGL perspective if you

will not be developing web applications. Use the Web perspective if you plan to

migrate Web transactions or develop Web applications. To set the default

perspective, select the perspective you want to use and then select Make

Default.

v Workbench -> Capabilities -> Tester. Select the Profiling and Logging

capability and then select OK. Reopen the Preferences window. In the Logging

section, select the General tab and then change the Default logging level to

SEVERE. Optionally, change the Default logging level to INFO or WARNING,

but do not leave it set to NONE.

VAGen Migration Preferences

The preferences listed below control the overall migration process. Unless

otherwise noted, these preferences are used both for Stage 2 during Stage 1 - 3

migration and for single file migration. To set these preferences, from the

Workbench window, select Windows -> Preferences -> VAGen Migration.

Single File Mode Preferences:

v Separate parts into EGL files. This preference is only used during single file

migration. If you select this preference, each program, map group, and table is

placed in its own file; other parts are placed in the file you specify on the Import

VAGen External Source Format File wizard. This adheres to the EGL

requirement of one generatable part per file. If you do not select this preference,

all the parts are placed in the EGL file you specify on the Import VAGen

External Source Format File wizard. See “Overview of Single File Migration” on

page 24 for specifics of the parts placement algorithm for single file mode.

Rename User Exit Information:

v Rename user exit. The VAGen migration tool provides simple renaming for data

items, records, functions, and maps based on adding a prefix to the part name or

part reference. Optionally, you can write a user exit routine to provide more

complex renaming. For example, you might want to change a hyphen (-) to an

underscore (_) during migration. Select the Rename user exit preference if you

are providing a user exit routine to rename parts. If you select this option, you

must provide additional information about your Rename user exit routine. See

the white paper ″Using the Rename User Exit in the VisualAge Generator to

EGL Migration Tool″ for details of how to create a Rename user exit, as well as

sample code.

Chapter 6. Stage 2—Conversion to EGL syntax 157

v JAR file location. Specify the location on your system of the .jar file that contains

your Rename user exit routine.

v Package name. Specify the name of the package within the .jar file that contains

your Rename user exit routine.

v Class name. Specify the name of the class within the package that contains your

renaming logic. This class must contain the method renameUserExit(String s,

Connection c).

v Use a database. Select this option if your Rename user exit uses a database to

provide the relationship between the old part name and the new part name.

Minimize VisualAge Generator Compatibility Mode: This group of preferences

enables you to minimize the automatic use of migration techniques that require

VisualAge Generator Compatibility Mode. Use caution when selecting these

preferences because they can result in more error messages on the EGL Problems

list or changes in runtime behavior.

v Do not initialize old EZESYS values. If you select this preference, the migration

tool does not include a declaration and initialization statement in each program

for an extra variable to contain the old VAGen values for EZESYS. The migration

tool still uses the extra variable when it converts statements involving EZESYS

other than IF, WHILE, or TEST. If you select this preference and you have

statements involving EZESYS other than IF, WHILE, or TEST, there will be an

error on the Problems list. Consider selecting this preference if you plan to

convert all statements to use the new EGL sysVar.systemType values or if you

know that you did not use EZESYS. See “EZESYS” on page 108 for additional

details.

v Do not include deleteAfterUse for tables. If you select this preference, the migration

tool always omits the deleteAfterUse property for the table use declaration

statements in each program. The migration tool issues a warning message for

those situations in which the deleteAfterUse property is omitted. Consider

setting this preference if you are migrating directly from VisualAge Generator

Version 4.5 FixPak 4 and all your production programs are generated with that

version and FixPak. If you are migrating from Cross System Product or earlier

releases of VisualAge Generator and you select this preference, be sure to

thoroughly test any program for which the deleteAfterUse property is omitted

from the use declaration for a table.

v Do not honor evensql=y for items or variables. If you select this preference, the

migration tool always uses odd precision (or 18 if the item is the maximum

length) when migrating a PACK data item part or nonshared item in a record.

The migration tool issues a warning message for those situations in which the

VAGen item specified even precision (evensql=y). Consider setting this

preference if you are certain that your SQL tables do not use even precision for

columns that you might reference in an SQL where clause or in an EGL prepare

statement. Alternatively, you can select this preference, migrate, and then review

all the item definitions for which the migration tool issued a warning message.

Using a precision other than what is specified in the SQL table definition can

result in poor performance for database access.

v Do not set compatibility mode. If you select this preference, the migration tool

always omits the vagCompatibility=″YES″ build descriptor option whenever the

tool converts a generation options part. You should only select this preference if

you do all of the following:

– Select all of the other 3 preferences in the Minimize VisualAge Generator

Compatibility Mode section.

158 Rational Software Development Platform: VisualAge Generator to EGL Migration Guide

– Ensure that all of your migrated part names adhere to the EGL part naming

conventions when VisualAge Generator Compatibility mode is disabled. You

can specify a Rename User Exit and code the exit to rename the VAGen parts

during migration to achieve this.

– Disable the EGL preference for VisualAge Generator Compatibility after you

finish migration. Note: Regardless of how you set the preferences, the

migration tool always turns on VisualAge Generator Compatibility mode

when refreshing the workspace.

VAGen Migration Database I/O Preferences

The preferences listed below control the migration of the VAGen syntax to EGL

syntax for SQL and DL/I database I/O. Unless otherwise noted, these preferences

are used both for Stage 2 during a Stage 1 - 3 migration and for single file

migration. To set these preferences, from the Workbench window, select Window

-> Preferences -> VAGen Migration -> VAGen Migration Database I/O

Preferences.

SQL Preferences:

v Result Set suffix. In VisualAge Generator, when an SQL REPLACE function needs

to reference the corresponding UPDATE or SETUPD function, the REPLACE

function must specify the function name. In EGL, multiple I/Os are supported

within a single function. A result set ID is used to uniquely identify a get or

open statement. The migration tool creates the result set ID from the function

name by concatenating the Result Set suffix. For example, if a function is named

MY-SETUPD and you use the default Result Set suffix of _RSI01, then the result

set ID that is included in the open statement for the function will be

MY-SETUPD_RSI01. You can set the Result Set suffix to any value that you want

other than blank. However, be sure to select something that will not cause

conflicts with any of your part names.

v Prepare suffix. In VisualAge Generator, if you need to have an SQL I/O statement

prepared at runtime, you select Execution Time Statement Build. The

corresponding EGL statement is the prepare statement. The prepare statement

includes a prepare statement ID so that other I/O statements such as close, get,

execute, and open can specify which prepare statement they are associated with.

The migration tool creates the prepare statement ID from the function name by

concatenating the Prepare suffix. For example, if there is a function named

MY-EXEC-TIME-BUILD and you use the default Prepare suffix of _PREP01, then

the prepare statement ID that is included in the prepare statement is

MY-EXEC-TIME-BUILD_PREP01. You can set the Prepare suffix to any value

that you want other than blank. However, be sure to select something that will

not cause conflicts with any of your part names.

v Omit column name. In VisualAge Generator, the SQL column name is always

specified for a field in an SQL record. In EGL, you can omit the SQL column

name if it is the same as the field name. If you select Omit column name, the

migration tool omits the EGL column property whenever the SQL column name

is the same as the field name. Omitting the column name can make your EGL

source code less cluttered.

v Omit isNullable property. In VisualAge Generator, the null indicator variable is

always included for every field in the SQL record. To preserve the VisualAge

Generator behavior, the migration tool always includes the isNullable property

for every field in an SQL record. However, in EGL, you can omit the null

indicator variable if the column is defined in SQL as not null. If you select the

Omit isNullable property, the migration tool omits the isNullable property from

every field in SQL records. Omitting the isNullable property can improve

runtime performance and reduce the risk of exceeding the DB2 precompiler

Chapter 6. Stage 2—Conversion to EGL syntax 159

limits.. However, you should only select the Omit isNullable property if you are

certain that all of your SQL columns are defined as not null. If any of your SQL

columns can be null, you should not select Omit isNullable property during

migration. After migration, you can remove the isNullable property for selected

fields in your SQL records if you want to improve performance.

v Omit isReadOnly property. In VisualAge Generator, the Read Only property must

be explicitly set for each field in an SQL record. Read Only must always be yes

if there are multiple tables specified for the SQL record. By default, the

migration tool includes the isReadOnly property for every field in an SQL record

that references multiple SQL tables. However, the EGL isReadOnly property

defaults to no if there is only one SQL table and to yes if there are multiple SQL

tables specified for the SQL record. If you select the Omit isReadOnly property,

the migration tool only includes isReadOnly if there is a single table specified

for the SQL record and the VisualAge Generator Read Only property is set to

yes. Omitting the isReadOnly property can make your EGL source code less

cluttered.

DL/I Preferences:

v Database PCB suffix. In VisualAge Generator, the same database name can be

used multiple times in a PSB. In EGL, the PSB is a record. The database name

becomes a field name and must be unique. The migration tool creates the field

name in the PSB from the database name, a number (if necessary for

uniqueness), and the Database PCB suffix. This avoids conflicts between the

database name and any other names in the program. Consider the situation in

which the database name COURSE is used for two different PCBs and COURSE

is also the name of a DL/I segment record. If you use the default Database PCB

suffix of _dbPCB, then the field name created for the first COURSE PCB is

COURSE_dbPCB. The field name created for the second COURSE PCB is

COURSE_n_dbPCB, where n is the number of the PCB in the VAGen PSB. The

name of the DL/I segment is still COURSE. You can set the Database PCB suffix

to any value that you want other than blank. However, be sure to select

something that will not cause conflicts with any of your part names.

v GSAM PCB suffix. The GSAM PCB suffix is used for the GSAM PCBs similar to

the way the Database PCB suffix is used for database PCBs. You can set the

GSAM PCB suffix to any value that you want other than blank. However, be

sure to select something that will not cause conflicts with any of your part

names.

VAGen Migration Syntax Preferences

The preferences listed below control the migration of the VAGen syntax to the EGL

syntax. Unless otherwise noted, these preferences are used both for Stage 2 during

a Stage 1 – 3 migration and for single file migration. To set these preferences, from

the Workbench window, select Window -> Preferences -> VAGen Migration ->

VAGen Migration Syntax Preferences.

Renaming preferences:

v Renaming prefix. The migration tool uses this prefix whenever a VAGen data

item, record, function or map name is an EGL or SQL reserved word or starts

with the # or @ symbol. The tool adds the Renaming prefix to the VAGen part

name to create a valid EGL part name. For example, date is an EGL reserved

word. If you have a function named DATE and use the default Renaming prefix

of VAGen_, then the migration tool changes the function DATE to

VAGen_DATE. The tool also changes all references to the function from DATE to

VAGen_DATE. You can set the Renaming prefix to any value that you want

160 Rational Software Development Platform: VisualAge Generator to EGL Migration Guide

other than blank or EZE. In addition, the Renaming prefix cannot start with the

or @ symbol. Be sure to select something that will not cause conflicts with any

of your part names.

v Level77 suffix. The migration tool uses this suffix whenever a VAGen working

storage record contains level 77 items. EGL does not support level 77 items. The

migration tool splits the VAGen working storage record into two EGL records.

The first record is named the same as the original VAGen working storage

record and contains all the non-level 77 items. The second record contains all the

level 77 items. The migration tool names this second record based on the

original working storage record name concatenated with the Level77 suffix. For

example, if the original working storage record is named MYRECORD and you

use the default Level77 suffix of _Level77Items, the EGL record that contains the

level 77 items will be named MYRECORD_Level77Items. You can set the Level77

suffix to any value that you want other than blank. However, be sure to select

something that will not cause conflicts with any of your part names.

v Help Map suffix. The migration tool uses this suffix whenever the main map

group and the help map group for a program have maps with the same name.

EGL requires that all forms in both formGroups for a program have unique

names. The migration tool renames maps in the help group that conflict with

map names in the main map group. Consider the following example. The main

map group for a program is MAPGP1 and contains MAP1. The help map group

for the same program is MAPGP2 and contains MAP1. Using the default Help

Map suffix of _helpmap, the migration tool renames the MAP1 in MAPGP2 to

be MAP1_helpmap. You can set the Help Map suffix to any value that you want

other than blank. However, be sure to select something that will not cause

conflicts with any of your part names.

Other conversion options:

v Convert shared data items to primitive item definitions. If you select this preference,

then whenever shared data items are used in records, tables, function local

storage, function parameter lists, or program parameter lists, the migration tool

converts the shared items to primitive definitions. If you have current

organization standards that discourage the use of shared data items in new

applications, this option enables you to remove the use of shared data items

from existing applications as you migrate. Warning: Only the primitive

definition is included in the record. Therefore, do not select this preference if

you use shared items in a UI record because the UI edit customizations for the

shared item are not copied to the EGL VGUI record.

v Change decimal comma to decimal point. The migration tool automatically converts

numeric literals to use the point if your workstation specifies a locale that

typically uses a comma to indicate decimal positions. For example, the migration

tool automatically converts the comma to a point for French and German locales.

However, some customers specify English as their locale and override the

normal decimal point setting to be a comma. If you use this technique, you must

select the Change decimal comma to decimal point preference. This ensures that

the migration tool will convert the comma to a point in numeric literals. EGL

only supports the point as the decimal position indicator.

Other recommended settings

The following additional settings are recommended:

v Optionally, close the Welcome view.

v If you are not already using the EGL perspective, switch to it by selecting

Window -> Open Perspective -> Other -> EGL -> OK. Alternatively, if you plan

to migrate VAGen Web transaction programs or develop new EGL

Chapter 6. Stage 2—Conversion to EGL syntax 161

PageHandlers, you should switch to the Web perspective. You can close other

perspectives by right-clicking the icon for the perspective on the tab in the

upper-right corner of the window and then selecting Close.

v If the Navigator view is not already included with the perspective that you are

using, you might want to add this view. To add the Navigator view, select

Window -> Show view -> Other. From the Show View window, expand Basic

and then select Navigator.

Note: Some activities such as deleting an EGL package are not fully supported

in the Navigator view. Always use the Project Explorer view if you are

restructuring your projects or packages.

v The Problems view shows any validation errors. Therefore, you might want to

set the Problems view to be in the foreground. In the lower right section of the

Workbench window, select the Problems tab to place the Problems view in the

foreground.

v In the Problems view, select the Filters... icon in the upper right corner. In the

Filters window, do as follows:

– Select the On selected resource only radio button. This limits the error

messages in the Problems view to the messages for the currently selected file.

When there are errors, this can help you focus your attention on a single file

at a time. The title bar of the Problems view provides a count of the messages

that matched the filter and the total number of messages for all projects in

your workspace.

– Deselect Limit visible items to. This enables you to see all the messages.
v When you have multiple files open for editing, you can configure the Navigator

view to automatically bring an open file to the foreground (make its editor

session the active editor) every time you select that open file in the Navigator

view. To do this, select the Link with Editor icon on the tool bar of the

Navigator view. You might also want to select the Link with Editor icon on the

tool bar of the Project Explorer view.

Setting up the Stage 2 VAGen migration file

The tool that performs Stage 2 of the migration can be invoked through a wizard.

To prepare for Stage 2, create a project where you can optionally save Stage 2

preferences for later use. To create the Stage 2 migration preferences, do the

following:

1. Start the EGL development environment. Be sure to set your workbench

preferences as explained in section “Setting your workbench preferences” on

page 155.

2. The Stage 2 wizard asks you for your database driver location. You can set a

classpath variable to hold this value so that the wizard will pick it up

automatically. The easiest way to do this is as follows:

a. Under Window->Preferences, select Java->Build Path->Classpath

Variables.

b. Click the New button.

c. For Name, enter the following: DB2_DRIVER_PATH

d. For Path, click the File button and navigate to your db2java.zip file. (This is

the same db2java.zip file that you used in Stage 1. By default the file is in

\SQLLIB\java\db2java.zip.)

e. Click OK in the New Variable Entry window, then click OK in the

Preferences window.

162 Rational Software Development Platform: VisualAge Generator to EGL Migration Guide

3. Create a simple project that can contain your Stage 2 preferences file if you

choose to save it. This is useful if you want to run Stage 2 in batch mode. Start

the wizard for this by selecting File->New->Project. Expand Simple, select

Project, and then select Next.

4. Give the project a name. For example, VAGENMIG. Then click Finish.

5. In the Project Explorer view, a simple project is listed under the Other Projects

folder. In the Navigator view, a simple project is listed alphabetically with all

the other projects.

6. Right click on your project and then select New->Other from the context menu.

7. Expand VAGen Migration to EGL and then select VAGen Migration File.

Click Next.

8. Enter the appropriate Stage 2 preferences:

a. On the first page of the wizard, edit the preferences as described in the

following table. The migration tool does not validate any of the Database

Information fields until you tab out of the field. This prevents multiple

attempts to connect to the database while you are entering information.

 Table 61. Preferences to enter on first page of wizard

Preference Meaning Value

Load Existing File This allows you to select a

previously saved Stage 2 preferences

file. Click the Choose File button to

select an existing .vgmig file. Click

the Load File button to retrieve the

preferences from that file and

display them in the wizard.

Optionally, choose and load an existing .vgmig file.

Database driver location This is the location of your DB2

driver.

path_to_db2java.zip\db2java.zip

Database driver This is the name of your DB2 driver. This value must always be

COM.ibm.db2.jdbc.app.DB2Driver. This value works

for both a local database or a remote database that

is cataloged locally.

Database name This is the name of the DB2

database you used in Stage 1 of

migration.

This value should be in the following format:

v jdbc:DB2:databaseName

databaseName is the name of the DB2 database you

used in Stage 1 of migration. VGMIG is the default

value for Stage 1.

Database schema This is the name of the DB2

database schema you used in Stage

1 of migration.

This value is the name of the DB2 schema you used

in Stage 1 of migration. MIGSCHEMA is the default

value for Stage 1.

Database user ID This is the database user ID you

used in Stage 1 of migration.

Use the same database user ID that you used for

Stage 1. (The default value is your logon ID.)

Database password This is the database password you

used in Stage 1 of migration.

Use the same database password that you used for

Stage 1. (The default value is your logon password.)

Log file location This is the location where a log file

will be written.

Enter a valid location (drive and directory) in the

file system.

Log file name This is the name of the log file

where you want the Stage 2

messages to be written.

Enter a valid file name.

b. On the second page of the wizard, edit the preferences as described in the

following table:

Chapter 6. Stage 2—Conversion to EGL syntax 163

Table 62. Preferences to enter on second page of wizard

Preference Meaning Value

Java or COBOL radio

button

This choice determines whether the

migration tool creates projects that

include Java Source folders.

If you are using Rational Web Developer or

Rational Application Developer, you should always

select the Java radio button.

For other products, you can select COBOL if you

only plan to generate COBOL.

Migrate remaining

VAGen parts

This determines whether or not

parts that are not referenced by any

generatable part in the migration set

will be converted to EGL.

Note: For the purposes of the

Migrate remaining VAGen parts

preference, UI records are treated

like other records. This preference

does not consider UI records to be

generatable parts.

Select the box to convert unreferenced parts to EGL.

Generally, you should select Migrate remaining

parts. If you do not select Migrate remaining parts,

control parts and any other parts that are unused

within the migration set will not be migrated to

EGL source.

Import into workspace This determines whether or not

Stage 3 (importing EGL into files in

the current workspace) will be

automatically started after Stage 2 is

complete.

Note: If you select this box, you

must select one of the radio buttons

under this checkbox to specify the

version to import (latest or oldest –

see description below), because only

one version of a project can be in

the workspace at a time.

Select this box to import EGL files directly after the

conversion of parts to EGL. Leave this box

unselected to import files later, during Stage 3.

Note:

v If you select this option, there is no need to run

Stage 3 separately. The migration tool

automatically starts Stage 3 (import) directly after

Stage 2 (conversion) and completes the migration

process.

Latest version This specifies that the latest version

of the desired migration sets should

be imported.

This option can only be selected if the Import into

workspace checkbox is selected.

Oldest version This specifies that the oldest version

of the desired migration sets should

be imported.

This option can only be selected if the Import into

workspace checkbox is selected.

Override existing files Stage 3 (the import process) uses

EGL produced by Stage 2 to create

and import the EGL files specified in

the Stage 1 report. If EGL files with

the same names as the EGL files that

Stage 3 is about to import already

exist in the workspace, this option

determines whether or not those

files will be overwritten.

This option can only be selected if the Import into

workspace checkbox is selected. Override existing files

enables you to specify how you want the Stage 3

migration tool to handle the situation in which the

migration set you are currently migrating contains

parts that should be placed in a file that is already

in your workspace. If you select Override existing

files, the Stage 3 migration tool replaces the existing

file and includes only those parts that are in the

current migration set. If you do not select Override

existing files, the Stage 3 migration tool merges any

new parts into the existing file. The new parts are

placed alphabetically by part type. See

“Overwriting and merging files” on page 44 for a

more complete discussion of the effects of this

option.

164 Rational Software Development Platform: VisualAge Generator to EGL Migration Guide

Table 62. Preferences to enter on second page of wizard (continued)

Preference Meaning Value

Save migrated files to

temporary directory

This provides the option to save

EGL files to a location in the file

system. This allows you to access

EGL files for multiple versions of a

project at the same time (whereas

you can only see one version at a

time in the workspace). You can

move EGL files directly from here to

your repository.

If you plan to migrate multiple versions of a

migration set, then do the following:

v Select this box so that each version can be written

to a different subdirectory.

v Specify the Folder under which the subdirectories

for the versions will be placed.

v Do not select Migrate now. Migration to a

temporary directory should only be done in batch

mode because of the resource requirements. If

you do select Migrate now, the migration tool asks

you to confirm that you really want to run in

online mode.

v Select Save current configuration to file. You must

also specify the project and file name where the

current configuration is to be saved as a .vgmig

file. The .vgmig file is required if you select Save

migrated files to temporary directory regardless of

whether you migrate in online or batch mode. If

you run Stage 2 in batch mode, point to the

saved .vgmig file to specify your migration

preferences.

Folder This is the directory in which you

want to save EGL files. Each

migration set version becomes a

subdirectory under the directory you

specify for Folder.

Specify an existing directory in your file system.

Migrate now This specifies that you want Stage 2

to run at this time, rather than just

setting up the preferences file to

migrate at a later time.

You must select either Migrate now to run Stage 2 in

online mode or Save current configuration to file to

save your preferences so that you can run Stage 2 in

batch mode at a later time. You can select both

options if you want to retain a copy of your

preferences for later reference. Do not select Migrate

now if you have already selected Save migrated files

to temporary directory. Saving to a temporary

directory can only be done in batch mode. Selecting

Migrate now indicates that you want to migrate in

online mode.

Save current

configuration to file

This enables you to save the

preferences you are specifying to a

file. You can later run Stage 2 in one

of the following ways:

v In online mode, right click the

saved .vgmig file and select Start

Migration from the context menu.

v In batch mode, use the -importFile

option to specify the saved .vgmig

file. For details, see “Running

Stage 2 in batch mode” on page

167.

You must select either Migrate now to run Stage 2 in

online mode or Save current configuration to file to

save your preferences so that you can run Stage 2 at

a later time. You can select both options if you want

to retain a copy of your preferences for later

reference.

If you select this option you must also specify the

Path and File Name where the current configuration

is to be saved as a .vgmig file. When you run Stage

2 later, point to the saved .vgmig file to specify

your migration preferences.

Path This specifies the project into which

the file should be saved.

\projectName, where projectName is the name of the

project that you want to contain your saved file.

File Name This specifies the name of the file to

which preferences will be saved.

fileName, where fileName is the desired name for

your file WITHOUT a file extension. The extension

.vgmig is automatically appended.

Chapter 6. Stage 2—Conversion to EGL syntax 165

c. On the third page of the wizard, the wizard lists the migration sets in the

database you specified. Select the migration sets you want to migrate. If you

do not select any migration sets, then the migration tool migrates all the

migration sets in the database. Click Finish.

The combinations of the check boxes that you select determine the actions that are

performed by the wizard:

v If you select Save current configuration to file, all the options are saved in the file

you specified after you click the Finish button.

v If you select Migrate now, Stage 2 migration runs after you click the Finish

button.

v If you also select either Import into workspace and/or Save migrated files to

temporary directory, Stage 3 will start automatically after Stage 2 completes.

Here is an example of a Stage 2 preferences file, stage2.vgmig:

databaseDriverLocation=d:\SQLLIB\java\java\db2java.zip

databaseDriver=COM.ibm.db2.jdbc.app.DB2Driver

databaseName=jdbc:DB2:VGMIG

databaseSchema=MIGSCHEMA

databaseUserid=myuserID

databasePassword=encoded:AAEDAwQFBwYKCwo+Pw==

configurationPlan=MyMigrationSetA,1.1

migrateRemainingParts=yes

workspaceImport=latest

overrideExistingFiles=yes

tempDirectory=

logFileLocation=D:\tempmig\MyMigrationSetA\stage2\MyMigrationSetA.log

migrateNow=yes

projectType=COBOL

Running Stage 2

The Stage 2 migration tool can be run in batch mode or from the user interface in

the EGL development environment.

Running Stage 2 from the user interface

The wizard described in “Setting up the Stage 2 VAGen migration file” on page

162 provides the option to save your preferences in a .vgmig file. If you select the

Migrate now box in the wizard, then Stage 2 migration starts when you click the

Finish button in the wizard. If you did not select the Migrate now box in the

wizard, when you are ready to run Stage 2 migration using your saved .vgmig file,

do the following:

1. From the Navigator view, expand the project containing the Stage 2 preferences

file by right-clicking on the + symbol next to the project name.

2. Right click on the .vgmig preferences file to get the context menu.

3. Click on Start Migration.

Stage 2 migration starts and converts the External Source Format for your specified

migration sets to EGL source and stores the EGL source in the migration database.

If you selected either Import into workspace or Save migrated files to temporary

directory, Stage 3 automatically starts after Stage 2 completes. After Stage 3, the

migration tool automatically starts a refresh of the workspace. The refresh step can

take some time, particularly if there is a large number of parts. When the refresh

step is complete, a pop-up window appears telling you that migration is complete.

Be sure to wait for the pop-up window.

166 Rational Software Development Platform: VisualAge Generator to EGL Migration Guide

When migration and the refresh step are complete, the following outputs are

available:

v The Stage 2 migration log file. The log file is in the directory you specified as the

Log file location. The log file contains information about what parts were

migrated and any informational, warning, or error messages that occurred

during Stage 2 migration.

v The ″to do″ list log file for the migration set. This ″to do″ list file is created at

the beginning of Stage 3 and contains a consolidated list of the messages

produced by Stage 2 that might require you to perform additional tasks to

complete the migration. The ″to do″ list is somewhat similar to the VisualAge

Generator generation messages in that the messages for each generatable part

and its associates are listed as a group. If a part has messages and is an associate

of several programs, the messages are listed once for each program. The ″to do″

list differs from the VisualAge Generator generation messages in that messages

for unused, nongeneratable parts are listed by project, package, and file name at

the end of the ″to do″ list. The ″to do″ list is placed in the same directory as the

Stage 2 migration log file.

v If you selected Import into workspace, then Stage 3 automatically starts and creates

the EGL projects, source folders, packages, and EGL files that are needed for

your migration set. The Stage 3 tool also imports the projects into your

workspace and rebuilds the projects so that EGL validation is run.

v If you selected Save migrated files to temporary directory, Stage 3 automatically

starts and creates the EGL projects, source folders, packages, and EGL files that

are needed for your migration set. The Stage 3 tool places these projects in the

temporary directory you specified. The Stage 3 migration tool appends the

VAGen version name to the project name when creating the projects in the

temporary directory. This enables you to migrate multiple versions of a project

at one time for later import into your workspace.

Running Stage 2 in batch mode

The Stage 2 wizard enables you to select one or more migration sets for immediate

migration. It also enables you to save the information in a file for later migration

in batch mode. To create a file for later migration, do the following:

1. Follow the steps described in “Setting up the Stage 2 VAGen migration file” on

page 162, except do the following:

v Select Save current configuration to file and specify the path and file name. The

file that is created automatically has the suffix .vgmig and is the file that you

need to specify as the -importFile when you run Stage 2 or Stage 3 in batch

mode.

v Be sure to deselect Migrate now. Deselecting this option indicates that you

want to save the information for migration at a later time.

v You can define multiple .vgmig files for later migration as a single batch.
2. Create a file with a .bat file extension.

For Windows environments, the contents of the .bat file should be the

following:

set path=InstallDirectory\eclipse\jre\bin;%path%

set classpath=InstallDirectory\eclipse\startup.jar;

 InstallDirectory\egl\eclipse\plugins\

 com.ibm.etools.egl.vagenmigration_version\runtime\eglMigration.jar;

cd InstallDirectory

java com.ibm.etools.egl.internal.vagenmigration.batch.VGMIG

 -importFile Path\vgmigFileName.vgmig

 -data Path\workspace

 >Path\LogName.log

Chapter 6. Stage 2—Conversion to EGL syntax 167

Note:

v The following statements must be written so that the statement is all

on one line:

– For Windows environments, the set classpath statement.

– The java statement.
v Repeat the java statement once for each .vgmig file that you want to

migrate in batch mode. However, if you selected Import into workspace

when you created any of your .vgmig files, then be sure that none of

the .vgmig files result in the same EGL project names. If you attempt

to migrate multiple .vgmig files for the same EGL project in the

same .bat file, the EGL project will only reflect the last of the .vgmig

files to be migrated.

v InstallDirectory is the drive and directory in which you installed the

Rational Developer product. You must include the InstallDirectory for

the path statement, the classpath statement, and the cd (change

directory) statement.

Note: If you installed and kept a previous version of the developer

product before installing the product that you are using now,

the installation directory of interest may be the directory that

was used in the earlier install.

v version is the plugin version number (for example, 6.0.1 or 6.0.1.103).

In general, you should use the highest version number you see for the

com.ibm.etools.egl.vagenmigration_version plugin.

v Path\vgmigFileName.vgmig refers to the drive, directory, and file name

of the .vgmig file that specifies the migration sets you want to migrate

from the migration database. The directory must include the

workspace name. This is the .vgmig file you saved in step 1. (For

example, d:\myworkspace\mySimpleProject\
myMigrationInformation.vgmig.)

v Path\workspace is the drive, directory, and workspace name where you

want to place the EGL files. (For example, the workspace could be

d:\myworkspace.) Any EGL projects and packages that are used by

the migration sets are created automatically by the migration tool. The

-data parameter is optional; -data is only required if you need to

specify VAGen Migration Preferences other than the default values. If

you want to set any VAGen Migration Preferences, you must specify

them in the workspace specified by the -data parameter before you

run the .bat file. See “VAGen Migration Preferences” on page 157 for

information about how to set your preferences.

v Path\LogName.log points to the drive, directory, and file name of the

log file you want to create for the java command. This log file lists any

problems with the java command itself. Any log messages produced

by Stage 2 or Stage 3 are placed in the log file that you specified on

the first page of the wizard and then saved into the .vgmig file. If you

include multiple java commands in the same .bat file, be sure to

specify a different log file name for each java command.
For Windows environments, an example of the java command might look

something like this (though it should be all on one line) :

java com.ibm.etools.egl.internal.vagenmigration.batch.VGMIG

 -importFile d:\myworkspace\mySimpleProject\myMigrationInformation.vgmig

 -data d:\myworkspace\

 >d:\migrationLogs\myMigrationInformationPiped.log

3. Shut down the EGL development environment.

168 Rational Software Development Platform: VisualAge Generator to EGL Migration Guide

4. Open a Command Prompt window, navigate to the directory containing your

.bat file, and run your .bat file.

Note: You can safely ignore the following message: PolicyClassLoader could not

find policy com.ibm.jxesupport.JxeClassLoaderPolicy.

5. When the process completes, your EGL project, source folders, packages, and

files will be stored in the directories you specified for them respectively. The

log file corresponding to each java command contains a list of the migrated

parts and any error messages. The messages are the same messages that are

written to the log file if you run Stage 2 using the user interface. Similarly, the

″to do″ list file contains the same messages that are written to this file if you

run Stage 2 using the user interface.

6. Start the EGL development environment.

7. You should see the EGL projects, source folders, packages, and files in your

workspace.

Chapter 6. Stage 2—Conversion to EGL syntax 169

170 Rational Software Development Platform: VisualAge Generator to EGL Migration Guide

Chapter 7. Stage 3 — Import

Stage 3 of the migration is also run with a plug-in supplied with EGL. In this

stage, you run another migration tool that builds EGL files from the EGL syntax

that was stored in the migration database during Stage 2.

Running the Stage 3 tool

From the EGL development environment, in the Workbench window, do the

following:

1. From the File menu, select Import.

2. Select VAGen Migration from Database and click Next.

3. Specify your preferences for this stage of migration:

a. On the first page of the wizard, edit the preferences as described in the

following table. The migration tool does not validate any of the Database

Information fields until you tab out of the field. This prevents multiple

attempts to connect to the database while you are entering information.

 Table 63. Preferences to enter on first page of wizard

Preference Meaning Value

Load Existing File This allows you to select a

previously saved Stage 3 preferences

file. Click the Choose File button to

select an existing .vgmig file. Click

the Load File button to retrieve the

preferences from that file and

display them in the wizard.

Optionally, choose and load an existing .vgmig file.

Database driver location This is the location of your DB2

driver.

path_to_db2java.zip\db2java.zip

Database driver This is the name of your DB2 driver. This value must always be

COM.ibm.db2.jdbc.app.DB2Driver. This value works

for both a local database or a remote database that

is cataloged locally.

Database name This is the name of the DB2

database you used in Stage 1 of

migration.

This value should be in the following format:

v jdbc:DB2:databaseName

databaseName is the name of the DB2 database you

used in Stage 1. VGMIG is the default value for

Stage 1.

Database schema This is the name of the DB2

database schema you used in Stage

1 of migration.

This value is the name of the DB2 schema you used

in Stage 1. MIGSCHEMA is the default value for

Stage 1.

Database user ID This is the database user ID you

used in Stage 1 of migration.

Use the same database user ID that you used for

Stage 1. (The default value is your logon ID.)

Database password This is the database password you

used in Stage 1 of migration.

Use the same database password that you used for

Stage 1. (The default value is your logon password.)

Log file location This is the location where a log file

will be written.

Enter a valid location (drive and directory) in the

file system.

© Copyright IBM Corp. 2004, 2006 171

Table 63. Preferences to enter on first page of wizard (continued)

Preference Meaning Value

Log file name This is the name of the log file

where you want the Stage 3

messages to be written.

Enter a valid file name.

b. On the second page of the wizard, edit the preferences as described in the

following table:

 Table 64. Preferences to enter on second page of wizard

Preference Meaning Value

Java or COBOL radio

button

This choice determines whether the

migration tool creates projects that

include Java Source folders.

If you are using Rational Web Developer or

Rational Application Developer, you should always

select the Java radio button.

For other products, you can select COBOL if you

only plan to generate COBOL.

Latest version This specifies that the latest version

of the desired migration sets should

be imported.

Select one of the radio buttons.

Oldest version This specifies that the oldest version

of the desired migration sets should

be imported.

Select one of the radio buttons.

Override existing files Stage 3 (the import process) uses

EGL produced by Stage 2 to create

and import the EGL files specified

in the Stage 1 report. If EGL files

with the same names as the EGL

files that Stage 3 is about to import

already exist in the workspace, this

option determines whether or not

those files will be overwritten.

Override existing files enables you to specify how

you want the Stage 3 migration tool to handle the

situation in which the migration set you are

currently migrating contains parts that should be

placed in a file that is already in your workspace. If

you select Override existing files, the Stage 3

migration tool replaces the existing file and includes

only those parts that are in the current migration

set. If you do not select Override existing files, the

Stage 3 migration tool merges any new parts into

the existing file. The new parts are placed

alphabetically by part type. See “Overwriting and

merging files” on page 44 for a more complete

discussion of the effects of this option.

172 Rational Software Development Platform: VisualAge Generator to EGL Migration Guide

Table 64. Preferences to enter on second page of wizard (continued)

Preference Meaning Value

Save migrated files to

temporary directory

This provides the option to save

EGL files to a location in the file

system. This allows you to access

EGL files for multiple versions of a

project at the same time. (You can

only see one version at a time in the

workspace). You can move EGL files

directly from here to your

repository.

If you plan to migrate multiple versions of a

migration set, then do the following:

v Select this box so that each version can be written

to a different subdirectory.

v Specify the Folder under which the subdirectories

for the versions will be placed.

v Do not select Migrate now. Migration to a

temporary directory should only be done in batch

mode because of the resource requirements. If

you do select Migrate now, the migration tool asks

you to confirm that you really want to run in

online mode.

v Select Save current configuration to file. You must

also specify the project and file name where the

current configuration is to be saved as a .vgmig

file. The .vgmig file is required if you select Save

migrated files to temporary directory regardless of

whether you migrate in online or batch mode. If

you run Stage 3 in batch mode, point to the

saved .vgmig file to specify your migration

preferences.

Folder This is the directory in which you

want to save the EGL files. Each

migration set version becomes a

subdirectory under the directory

you specify for Folder.

Specify an existing directory in your file system.

Migrate now This specifies that you want Stage 3

to run at this time, rather than just

setting up the preferences file to

migrate at a later time.

You must select either Migrate now to run Stage 3 in

online mode or Save current configuration to file to

save your preferences so that you can run Stage 3 in

batch mode at a later time. You can select both

options if you want to retain a copy of your

preferences for later reference. Do not select Migrate

now if you have already selected Save migrated files

to temporary directory. Saving to a temporary

directory can only be done in batch mode. Selecting

Migrate now indicates that you want to migrate in

online mode.

Save current

configuration to file

This enables you to save the

preferences you are specifying to a

file. You can later run Stage 3 in one

of the following ways:

v In online mode, right click the

saved .vgmig file and select Start

Migration from the context menu.

v In batch mode, use the

-importFile option to specify the

saved .vgmig file. For details, see

“Running Stage 2 in batch mode”

on page 167.

You must select either Migrate now to run Stage 3 in

online mode or Save current configuration to file to

save your preferences so that you can run Stage 3 at

a later time. You can select both options if you want

to retain a copy of your preferences for later

reference.

If you select this option, you must also specify the

Path and File Name where the current configuration

is to be saved as a .vgmig file. When you run Stage

3 later, point to the saved .vgmig file to specify

your migration preferences.

Path Specifies the project into which the

file should be saved.

\projectName, where projectName is the name of the

project that you want to contain your saved file.

File Name This specifies the name of the file to

which preferences will be saved.

fileName, where fileName is the desired name for

your file WITHOUT a file extension. The extension

.vgmig is automatically appended.

Chapter 7. Stage 3 — Import 173

c. On the third page of the wizard, select the migration sets to import.

Note: The VAGen Migration Import from Database wizard only lists

migration sets that have been migrated to EGL. This ensures that you

run Stage 2 to convert the migration set to EGL source and store the

EGL into the migration database before you run Stage 3.
4. Click Finish.

5. The migration tool creates the EGL projects, EGL source folder, and EGL

packages based on the migration set you selected. The tool extracts the EGL

source from the migration database and creates the EGL files based on the

migration set. The migration tool also includes import statements and updates

the project’s EGL build path so that the part references can be resolved.

Running Stage 3 in batch mode

The only difference between running Stage 2 and Stage 3 in batch mode is the

wizard that you use to create the .vgmig file. See “Running the Stage 3 tool” on

page 171 for details on setting up the .vgmig file to run just Stage 3. See “Running

Stage 2 in batch mode” on page 167 for details of the commands to include in your

.bat file and descriptions of the options you can specify for batch mode.

Using the migration sets written to temporary directories

If you direct the output of stage 3 to a temporary directory, the migration tool

creates one subdirectory for each migration set version. The subdirectory name is

of the form migrationSetName_versionName.

There are two techniques you can use to bring the projects into a workspace:

v Technique 1 is convenient if you only have a few projects in the subdirectory;

however, it does not support EGL Web projects (VAGen Web Transactions or UI

records). In this technique, you can point an existing workspace to each of the

projects. This technique does not copy the projects into your workspace; it

merely makes the projects available to your workspace. When you modify or

delete files in the projects, the change is made on the file system in the directory

to which the workspace points.

1. From an existing workspace, select Window -> Preferences -> Workbench

and deselect Build automatically. This avoids multiple rebuilds while you

are bringing in each of the projects.

2. From the context menu of the Navigator or Project Explorer view, select

Import -> Existing Project Into Workspace.

3. Select the Browse button for the Project contents and point to the first

project. Select Finish.

4. Repeat steps 2 and 3 for each of the projects within the subdirectory for the

migration set.

5. Select Project -> Build All to rebuild the workspace with the new projects.
v Technique 2 is convenient if there are a number of projects in the subdirectory;

it is required if you use EGL Web projects. In this technique, you bring up a

workspace for the subdirectory as follows:

1. Start the EGL development environment.

2. When you are prompted for the workspace name, point to the subdirectory

containing a migration set version and then select OK.

3. Modify your workbench preferences to do the following:

174 Rational Software Development Platform: VisualAge Generator to EGL Migration Guide

– Turn on the Workbench Capabilities for EGL Development and VisualAge

Generation to EGL Migration.

– Ensure that the EGL preference is set for VisualAge Generator

Compatibility mode.

– Set any other preferences that you normally set for a new workspace.
4. If you have errors in the Problems view indicating that projects could not be

built, use the Navigator view to locate any closed projects. Closed projects do

not have the plus (+) symbol to the left of the project name. Select the closed

projects by selecting Open Project from the context menu. The projects

should now be visible on the Project Navigator view.

Chapter 7. Stage 3 — Import 175

176 Rational Software Development Platform: VisualAge Generator to EGL Migration Guide

Chapter 8. Running migration in single file mode

An alternative to running migration using Stages 1 – 3 is running migration in

Single File Mode. This process allows you to migrate one External Source Format

file directly to an EGL file. To run migration in this mode, you must first export

VisualAge Generator parts to an External Source Format file, and then import that

External Source Format file into EGL. During the import process, the External

Source Format file is migrated into one or more EGL files, depending on your

preferences.

To export parts from VisualAge Generator, do the following:

1. Start VisualAge Generator on Java (or VisualAge Generator on Smalltalk) and

open the VAGen Parts Browser.

2. Select the parts you want to export and right-click the selection.

3. From the context menu, select Import/Export —> VAGen Export (or VAGen

Export with Associates).

4. Type a name for the External Source Format file in the box and click the Save

button. (If you type the name of an existing file, you will be asked if you

would like to add parts to the file or overwrite it. Choose whichever is

appropriate for you.)

To prepare for single file mode, do the following:

1. Start the EGL development environment and point to your workspace. (For

example, d:\workspaces\myworkspace)

2. Set your migration preferences. See “VAGen Migration Preferences” on page

157 for information on how to do this.

3. From the Workbench window, select Window -> Preferences -> VAGen

Migration. In general, you should always ensure that the Separate parts into

EGL files preference is selected. When you select this preference, each

program, map group, table, and UI record is placed in its own file. This

adheres to the EGL requirement of one generatable part per file. If you do not

select Separate parts into EGL files, all the parts except UI records are placed

in the same EGL file. See “Overview of Single File Migration” on page 24 for

specifics of the parts placement algorithm for single file mode.

4. Create a new EGL project. (For example, MyProject.) Alternatively, you should

create an EGL Web project if you are planning to migrate VAGen Web

transactions or develop new EGL PageHandlers.

5. Under the EGLSource directory for the EGL project, create a new EGL package.

(For example, my.pkg)

6. See the section “Running single file migration using the user interface” on page

177 for details on running in online mode or “Running single file migration

using batch mode” on page 179 for details about creating a batch command file

to process multiple External Source Format files with a single command file.

Running single file migration using the user interface

To import the External Source Format file into EGL, do the following:

 1. From the Project Explorer or Navigator view, select the EGL package in which

to put the resulting EGL file.

 2. Right-click the package. From the context menu, select Import.

© Copyright IBM Corp. 2004, 2006 177

3. Select VAGen External Source Format File and select Next.

 4. In the Input file name field, enter the name of the External Source Format file

you want to import.

 5. In the Source folder field, enter the name of the project and source folder in

which to put the EGL file. (For example, MyProject\EGLSource)

 6. In the Package name field, enter the name of the package in which to put the

EGL file. The migration tool also uses the package name you specify for the

package statement within the EGL file. (For example, my.pkg)

 7. In the EGL file name field, enter the name of the EGL file that will be created

from your External Source Format file. By default, the EGL file name will be

the same as the External Source Format file, but with the .egl file extension.

See “Overview of Single File Migration” on page 24 for information about

how the migration tool uses the Separate parts into EGL files preference and the

type of parts in the External Source Format file to determine what files to

create during migration in single file mode.

 8. In the Log file location field, enter the drive and directory where the

migration log file is to be placed. In the Log file name field, enter the name

for the migration log file. The Log file name defaults to match the name of the

External Source Format file that you specified. The migration log file contains

any messages written during migration.

 9. Click Finish. If the file name you specified in the EGL file name field already

exists in the container you specified in the Container field, you are prompted

to append or overwrite to the file. Based on your response to the overwrite

prompt, the migration tool does the following:

v If you specify that you do not want to overwrite the existing targetFile, then

any data items, functions, PSBs, and non-VGUI records in the second

import are added to the targetFile. All the common parts in the second

import result in duplicate parts within the targetFile.

v If you specify that you want to overwrite the existing targetFile, then any

data items, functions, PSBs, and non-VGUI records in the second import

completely replace the targetFile. This results in the loss of any parts

included in the first import, but not included in the second import.

v If you selected the Migration Preference to Separate parts into EGL files, the

migration tool overwrites the files created for programs, formGroups, and

dataTables. If you did not select the preference, then these parts are placed

in the targetFile and added or overwritten based on your response to the

overwrite prompt.

v The migration tool always overwrites the files for VGUI records and .eglbld

files.
10. When the migration completes, you should notice the following:

v One or more EGL files should be listed in the project, source folder, and

package that you specified. See “Overview of Single File Migration” on

page 24 for information about how migration tool uses the Separate parts

into EGL files preference and the type of parts in the External Source Format

file to determine what files to create during migration in single file mode.

v Any error messages appear in a pop-up window. If you did not specify a

Log file location, you can use the Save to File button to save the messages

in a file. Be sure to close the pop-up window.
11. Select the project and then select Project —> Build Project. This causes

validation to run so that the Problems view reflects the most current messages

for all files in the project.

178 Rational Software Development Platform: VisualAge Generator to EGL Migration Guide

Running single file migration using batch mode

The user interface enables you to migrate one External Source Format file at a

time. With batch mode, you can migrate multiple External Source Format files in a

single command file. To use batch mode do the following:

1. Create a file with a .bat file extension. For Windows environments, the contents

of the .bat file should be:

set path=InstallDirectory\eclipse\jre\bin;%path%

set classpath=InstallDirectory\eclipse\startup.jar;

 InstallDirectory\egl\eclipse\plugins\

 com.ibm.etools.egl.vagenmigration_version\runtime\eglMigration.jar;

cd InstallDirectory

java com.ibm.etools.egl.internal.vagenmigration.batch.VGMIG

 -importFile Path\ExternalSourceFormatFile.esf

 -eglFile Path\EGLFile.egl

 -data Path\workspace

 -package packageName

 -overwrite

 >Path\LogName.log

Note:

v The following statements must be written so that the statement is all

on one line:

– For Windows environments, the set classpath statement.

– The java statement.
v Repeat the java statement once for each External Source Format file

you want to migrate.

v InstallDirectory is the drive and directory in which you installed the

Rational Developer product. You must include the InstallDirectory for

the path statement, the classpath statement, and the cd (change

directory) statement.

Note: If you installed and kept a previous version of the developer

product before installing the product that you are using now,

the installation directory of interest may be the directory that

was used in the earlier install.

v version is the plugin version number (for example, 6.0.1 or 6.0.1.103).

In general, you should use the highest version number you see for the

com.ibm.etools.egl.vagenmigration_version plugin.

v Path\ExternalSourceFormatFile.esf refers to the drive, directory, and file

name of the External Source Format file you want to migrate. (For

example, d:\temp\VAGenFiles\PROG1.esf.)

v Path\EGLFile.egl refers to the drive, directory, and file name of the

EGL file you want to create. The directory must include the

workspace, EGL source folder, and package where you want to place

the EGL source file. (For example, d:\myworkspace\MyProject\
EGLSource\my\pkg\prog1.egl.) EGLFile.egl is used in the same way

as the EGL file name field you specify when you use the Import

VAGen External Source Format File wizard. See “Overview of Single

File Migration” on page 24 for information about how migration tool

uses the Separate parts into EGL files preference and the type of parts in

the External Source Format file to determine what files to create

during migration in single file mode.

v Path\workspace is the drive and directory for your workspace. (For

example, d:\workspaces\myworkspace) If you do not specify the -data

Chapter 8. Running migration in single file mode 179

option, anything you specified in the VAGen Migration Preferences is

ignored and the migration tool uses the default VAGen Migration

Preferences. If you want to specify VAGen Migration Preferences, you

must specify the -data option and point to the workspace in which you

set the preferences.

v packageName is the name of the package with which you want to

associate the EGL file. (For example, my.pkg.) The package name is

also used in the package statement of the .egl files that the migration

tool creates.

v The -overwrite parameter is optional. This parameter tells the migration

tool whether or not to overwrite an existing EGL file in the specified

directory with the specified name.

v Path\LogName refers to the location and file name of the log file you

want to create for the migration of the corresponding External Source

Format file. Sending your migration messages to a log file is also

optional, but it is highly recommended. If you include multiple Java

commands in the same .bat file, be sure to specify a different log file

name for each Java command.
For Windows environments, an example of the java command might look

something like this (though it should be all on one line):

java com.ibm.etools.egl.internal.vagenmigration.batch.VGMIG

 -importFile d:\temp\VAGenFiles\prog1.esf

 -eglFile d:\workspaces\myworkspace\MyEGLProject\EGLSource\my\pkg\prog1.egl

 -data d:\workspaces\myworkspace

 -package my.pkg -overwrite >d:\temp\EGLLogs\prog1.log

2. Shut down the EGL development environment.

3. Open a command prompt window, navigate to the directory containing your

.bat file, and run your .bat file.

Note: You can safely ignore the following message: PolicyClassLoader could not

find policy com.ibm.jxesupport.JxeClassLoaderPolicy.

4. When the process completes, your EGL files and log files will be stored in the

directories you specified for them, respectively. The log file contains a list of the

migrated parts and any error messages. The messages are the same messages

that are listed in the pop-up window when you use the Import Wizard in

online mode.

5. Start the EGL development environment.

6. Select the project into which you imported External Source Format files, then

right-click and select Refresh. This refreshes the project from the file system so

that the EGL files that were created, appended, or overwritten during migration

in batch mode are recognized by EGL. This in turn causes validation to run so

that the Problems view reflects the most current messages for all files in the

project. Then you can expand the package you created to see your EGL files.

180 Rational Software Development Platform: VisualAge Generator to EGL Migration Guide

Part 5. Completing the migration

© Copyright IBM Corp. 2004, 2006 181

182 Rational Software Development Platform: VisualAge Generator to EGL Migration Guide

Chapter 9. Completing your migration

After you have migrated your source code using Stages 1 – 3 migration or single

file migration, there are some additional tasks you should do. This includes the

following:

v Set the Build Order preference

v Export your preferences.

v Save a baseline for the EGL projects and packages in your source code

repository.

v Preliminary steps for completing single file migration.

v Review your EGL source code.

v Review your EGL build descriptor parts.

v Review your EGL linkage option parts.

v Review your EGL resource associations parts.

v Establish a bind control part to use as a template

v Establish program-specific a bind control parts

v Review your linkedit commands

v Review your VGWebTransactions

v Prepare for debugging.

v Generate and test with COBOL generation.

v Generate and test with Java generation.

v Review your standards

v Consider whether to eliminate the use of VisualAge Generator Compatibility

mode

Setting the Build Order preference

When EGL builds the workspace, it builds the projects based on the Build Order

preference. The default for this preference might not provide the best performance.

In general you want the projects that are referenced the most frequently (such as

common projects) to be built first. This ensures that when files in other projects

import packages, the location of the common parts is already known. To change

the Build Order preference, do the following:

1. Select Window > Preferences.

2. Select Build Order.

3. Deselect Use default build order.

4. Select projects in the Project build order list and use the Up and Down buttons

to modify the build order.

5. After making all the changes, select Apply and then select OK.

Exporting your preferences

After you have worked with EGL during your pilot project, you might have set

additional preferences beyond those that are required or recommended in

“Required EGL preferences” on page 156, “Recommended preferences” on page

156, “VAGen Migration Preferences” on page 157, and “Setting the Build Order

preference.” For example, you might have set other preferences related to your

© Copyright IBM Corp. 2004, 2006 183

source code repository and the library management process you have chosen. You

can export your preferences to a file so that other developers can import the

preferences to have as a starting base for their own preferences. The export

technique is also an easy way to move preferences from one workspace to another.

To export your preferences, do the following:

v Select Window -> Preferences.

v Select Export in the lower left corner of the Preferences window.

v Point to a file where you want to save your preferences.

Other developers can import your preferences into a workspace by doing the

following:

v Select Window -> Preferences.

v Select the EGL capability as described in “Required EGL preferences” on page

156.

v Select Window -> Preferences.

v Select Import in the lower left corner of the Preferences window.

v Point to the file where you saved your preferences.

Note: This technique does not have any effect on the settings for perspectives and

views. It only changes the preferences.

Saving a baseline for EGL projects and packages

Before you attempt to resolve any messages in the Problems view or modify any

migrated EGL code, you might want to create a version of the EGL projects and

packages in your source code repository. Storing and versioning the EGL projects

and packages immediately after migration provides a baseline so that you know

exactly what source code was produced by the migration tool. This baseline also

provides a way of tracking any code changes you have to make by hand. This is

especially useful during a pilot project as a way of capturing all the changes so

that you can document the types of changes that were necessary. This

documentation can serve as an aid in migrating additional subsystems.

Preliminary steps for completing single file migration

Single file migration does not do everything that Stage 1 – 3 migration does. You

must do the following steps manually:

v Nest any forms within their corresponding formGroup. This is required if you

migrate two formGroups to the same package and the two formGroups contain

the same form name. (For example, MAP1).

v Resolve any duplicate parts within the same EGL package. This can occur if you

migrate two programs with their associates to the same EGL package and the

two programs share some common parts. You can split the common part

definitions into a centralized common file or you can remove the duplicate parts

from one of the files. If all the files are in the same package, you do not need to

modify the EGL build path property or add import statements.

v Update the EGL build path property for the current project to list all the projects

that the current project needs to reference to resolve any part names. To update

the EGL build path, in the Project Navigator view, select the current project,

right-click the selection, and then select Properties. On the EGL Build Path page,

on the Projects tab, select the additional projects that the current project needs to

reference. Be sure to include in the EGL build path any projects that contain

packages that files in the current project need to import. For example, if FileA is

184 Rational Software Development Platform: VisualAge Generator to EGL Migration Guide

in ProjectB and FileA needs to import packageC, be sure to include the project

where packageC is located in the EGL build path for ProjectB.

v Add any import statements to your EGL file to point to the common packages

that your file needs to reference. The packages that you specify for the import

statement must exist in projects that are specified for the EGL build path of the

project in which the current EGL file is located. For example, if FileA is in

ProjectB, then the import statements in FileA can only reference packages that

are located in projects specified for the EGL build path of ProjectB.

Common steps for both Stage 1 — 3 and single file migration

Reviewing your EGL source code

You need to perform the following steps regardless of whether you used Stage 1 –

3 migration or single file migration:

v Review and resolve the errors in the migration log or the ″TODO″ list log. These

errors reflect ambiguous situations that the migration tool was not able to

resolve. Modify your EGL source code to resolve these errors. For example, if

you used the VAGen RETR statement and did not explicitly specify a search

column, then if the table was not available during migration, the EGL syntax

includes EZE_UNKNOWN_SEARCH_COLUMN. You must update your EGL

source code with the correct search column name based on the dataTable

definition. See Appendix C, “Messages from the migration tools,” on page 357

for help in resolving messages in the migration log or the ″TODO″ list log. See

Appendix D, “Messages in the Problems view,” on page 385 for help with

resolving specific strings that the migration tool uses when it creates

intentionally invalid EGL syntax.

v If you have program, dataTable, or formGroup names that are reserved words,

you must change the part name. If you generate COBOL, you might want to set

the alias property for the part to specify the original part name. That will help

you avoid having to change any external references to the program, dataTable,

or formGroup.

v Review and resolve any additional errors in the Problems view. See Appendix E,

“IWN.xxx messages in the Problems view,” on page 391 for help in resolving

common messages in the Problems view that are a result of the migration

process.

v Determine if you need to set the containerContextDependent property for any

records or functions. For more details, see “containerContextDependent

Property” on page 36.

Reviewing your EGL build descriptor parts

The migration tool converts VAGen generation options parts to EGL build

descriptor parts. However, some VAGen options have no EGL equivalent. In

addition, EGL has several new build descriptor options that you might need to set.

You might see errors in the Problems view due to either of these changes. See

Appendix E, “IWN.xxx messages in the Problems view,” on page 391 for help in

resolving common messages in the Problems view that are a result of the migration

process. You might need a text editor to resolve some of the problems. You need to

perform the following steps regardless of whether you used Stage 1 – 3 migration

or single file migration:

v Review general build descriptor options.

v Review COBOL generation build descriptor options.

v Review Java generation build descriptor options.

Chapter 9. Completing your migration 185

v Establish a debug build descriptor part.

Reviewing general build descriptor options

You need to review the following build descriptor options regardless of whether

you plan to generate COBOL or Java:

v If you generate COBOL for a national language in which the decimal point is the

comma symbol, you must include the decimalSymbol build descriptor option. If

you generate Java, you might want to include the decimalSymbol build

descriptor option to improve runtime performance.

v If you use the VAGen EZESYS special function word to determine your runtime

environment, you might want to set the EGL build descriptor option

eliminateSystemDependentCode. Refer to the online helps for more information

about this option.

v Refer to the online helps for information about master build descriptors. This

technique is a replacement for the VAGen preference for the Default generation

options part. The migration tool automatically splits any generation options part

that contains the NOOVERRIDE attribute into two build descriptor parts. One of

the build descriptor parts is named xxxxx, and the other is named

xxxxx_NOOVERRIDE, where xxxxx is the original VAGen generation options

part name. The part named xxxxx contains the EGL replacement for all the

VAGen generation options that did not specify the NOOVERRIDE attribute. The

part named xxxxx_NOOVERRIDE contains the EGL replacement for all the

VAGen generation options that specified the NOOVERRIDE attribute. This split

into two parts is required if you decide to use master build descriptors.

v If you used the VAGen /OPTIONS generation option to chain generation

options parts, review how your EGL build descriptor parts chain using the

nextBuildDescriptor option. You might need to modify this chaining to obtain the

same set of build descriptor options that you had in VisualAge Generator.

v If you generate Web transaction parts for the COBOL environments, refer to the

online helps for information about the secondaryTargetBuildDescriptor that is

used for generating the Java parts associated with VGUI records. The migration

tool automatically splits any generation options part into two build descriptor

parts if the generation option part contains any of the following options:

/javadestdir, /javadesthost, /javadestpassword, /javadestuserid, or /javasystem.

One of the build descriptor parts is named xxxxx, and the other is named

xxxxx_TARGET2, where xxxxx is the original VAGen generation options part

name. The part named xxxxx contains the EGL replacement for all the VAGen

generation options that are used when generating the EGL VGWebTransaction

program for the primary (COBOL) runtime environment. The part named

xxxxx_TARGET2 contains the EGL replacement for all the VAGen generation

options that are used when generating the EGL VGUI record for the secondary

(Java) runtime environment. The migration tool places the EGL equivalent for

the following generation options in the secondary build descriptor part:

/javadestdir, /javadesthost, /javadestpassword, /javadestuserid, and

/javasystem. The migration tool places the EGL equivalent for the following

options in both the primary and secondary build descriptor parts: /genout,

/genresourcebundle, /msgtableprefix, /resourcebundlelocale, and /targnls. The

migration tool includes the secondaryTargetBuildDescriptor option in the

primary build descriptor part and sets the value for the option to the name of

the secondary build descriptor part.

v If you generate Web transaction parts and use message tables, you might need

to change the msgTablePrefix build descriptor option. The message table is

specified by the program that uses a VGUI record. If the message table and the

186 Rational Software Development Platform: VisualAge Generator to EGL Migration Guide

VGUI record are in different packages, you must modify the secondary build

descriptor part and include the package name (for example, msgTablePrefix =

″packageName.prefixID″).

v The migration tool does not create a default build descriptor for you when it

creates the EGL non-Web projects. This enables you to specify one of your

migrated build descriptor parts as the default build descriptor. You can establish

a default build descriptor for a file, package, EGL source folder, project, or

workbench levels. The default build descriptor that is closest to the generatable

part is the one that is used. For example, you can specify a default build

descriptor for just one file and specify a different default build descriptor for the

workbench. In this situation, if you generate the program contained in the file,

the default build descriptor for the file is used. When you generate any other

program, then the workbench default build descriptor is used.

– To set a preference for a particular file, package, EGL source folder, or project,

select the resource (file, package, folder, or project), then right-click and select

Properties from the context menu. Select EGL Default Build Descriptor in the

left pane. Select the build descriptor that you want to use as the default for

all generatable parts in this resource. Assuming there is no closer EGL default

build descriptor, the Target system build descriptor is the default that will be

used whenever you generate anything in this resource. The Debug build

descriptor is the default that will be used when you use the debugging tool.

– To set a workbench preference for a build descriptor part, select Window ->

Preferences -> EGL -> Default Build Descriptor. This preference applies to

all projects, packages, source folders, and files if you do not specifically

override it. You can set both a Target system build descriptor to use for

generation and a Debug build descriptor to use with the debugging tool.
v The migration tool creates a default build descriptor for you when it creates the

first EGL Web project in a migration set. This ensures that the VGUI records can

be generated into JSPs when the workspace is refreshed at the end of Stage 3.

You can change the default build descriptor for the project, the EGL source

folder, or any packages or files the project contains.

v If your control parts (build descriptor, linkage options, resource association, bind

control, and linkedit parts) are not all in the same file, you must modify the

current file to include import statements for the files that contain other build

parts that you want to reference from the current file. For example, if

buildDescriptorPartA references a linkageTableB that is in a different file, the file

containing buildDescriptorPartA must include an import statement for the file

that contains linkageTableB. Use the EGL Build Parts Editor to add the import

statement.

Reviewing COBOL generation build descriptor options

If you plan to generate COBOL, you need to review or set the following build

descriptor options:

v For VisualAge Generator, the outputs of COBOL generation are transferred to

the host to run the preparation steps. EGL uses a build server to handle the

preparation steps. For the EGL z/OS and iSeries build servers, there is a port

number that must be specified for the destPort build descriptor option to

transfer the outputs of generation. Contact the person who installed and

configured the build server to determine the port number on which the remote

build server is listening for build requests.

v If you do not use web transactions and do not plan to create EGL page handlers,

you might want to set the EGL build descriptor option genResourceBundle to

NO in your build descriptor parts that generate for COBOL runtime

environments. This prevents the Java generation of your DataTables.

Chapter 9. Completing your migration 187

v If you generate COBOL for the z/OS environment, you must also do the

following:

– Establish a bind control part to use as a template. (See “Establishing a bind

control part to use as a template” on page 190.)

– Establish a program-specific bind control part. (See “Establishing a

program-specific bind control part” on page 192.)

– Review linkedit commands. (See “Reviewing linkedit commands” on page

193.)
v If you generate COBOL for the VSE environment, you must also do the

following:

– Review linkedit commands (see “Reviewing linkedit commands” on page

193).

– Review the VisualAge Generator EGL Plug-in for VSE Reference Manual.

Reviewing Java generation build descriptor options

If you plan to generate Java, you need to review or set the following build

descriptor options:

v Add the genProject build descriptor option to specify where the outputs of Java

generation are to be placed. There is no VAGen generation option that migrates

to the EGL genProject build descriptor option. The genProject option is required

in the following cases:

– If you generate for HP-UX or SOLARIS

– If you generate VGWebTransactions or VGUI records or their associated parts

such as dataTables. In this case, be sure that the genProject option specifies an

EGL Web project.
v There are some EGL build descriptor options that have somewhat different

behavior from their corresponding VAGen generation option. Refer to the online

helps for information about the following build descriptor options to determine

whether you need to set or modify them for your environment:

– genProperties, which is set by the migration tool based on the VAGen

/genproperties option.

– enableJavaWrapperGen, which is set by the migration tool based on the

VAGen /system=JAVAWRAPPER option.
v There are some new EGL build descriptor options that have no corresponding

VAGen generation option. Refer to the online helps for information about the

following build descriptor options to determine whether you need to set them

for your environment:

– dateMask

– sessionBeanID

– sqlJDBCDriverClass

– sqlValidationConnectionURL

– tempDirectory (for VGUI records only)

Establishing a debug build descriptor part

Create a build descriptor part that contains the build descriptor options that you

want to use during debug. See the online helps for guidance on creating a debug

build descriptor part.

Reviewing your EGL linkage option parts

The migration tool converts VAGen linkage table parts to EGL linkage options

parts. However, some VAGen options have no EGL equivalent. In addition, EGL

188 Rational Software Development Platform: VisualAge Generator to EGL Migration Guide

has several new linkage options that you might need to set. You might see errors

in the Problems view due to either of these changes. See Appendix E, “IWN.xxx

messages in the Problems view,” on page 391 for help in resolving common

messages in the Problems view that are a result of the migration process. Also refer

to the online helps for details about the linkage options that are supported for your

environment. You need to perform the following steps regardless of whether you

used Stage 1 – 3 migration or single file migration:

v Review and resolve the messages in the migration log and in the Problems view.

You might need a text editor to resolve some of the problems.

v For callLink, consider the following:

– Not all of the linktypes from VisualAge Generator are supported in EGL. For

example, CSOCALL is no longer supported. The migration tool converts

CSOCALL to a remoteCall. However, the attributes you must specify for an

EGL remoteCall differ from those for CSOCALL.

– Not all of the remoteComType values from VisualAge Generator are

supported in EGL. For example, DCE, DCESECURE, and APPCIMS are no

longer supported. The migration tool converts these unsupported values

exactly as they are, which results in an invalid EGL linkage options part. This

ensures that there is an error in the Problems view as a reminder that you

must modify the linkage options part to specify the option you want to use

with EGL.

– If you change to use remoteComType=CICSECI, you must add the ctgPort

and ctgLocation attributes. This does require the configuration and setup of a

CICS Transaction Gateway Server for the invocation of remote CICS

transactions.

– If you change to use remoteComType=CICSSSL, you must add the ctgKeyStore

and ctgKeyStorePassword attributes. In addition, if you have not already

included the ctgPort and ctgLocation attributes in your VAGen linkage table,

you must include them for the EGL remoteComType=CICSSSL.

– If you decide to use CICSJ2C, you must add the pgmName, conversionTable,

remotePgmType, luwControl, remoteBind, location, and parmForm attributes.

– If you change to use remoteComType=IMSTCP as a replacement for

APPCIMS, refer to the online helps for assistance in setting the additional

attributes that are necessary. Also review the online help for existing

attributes because the values that must be specified have different meanings

for IMSTCP.

– conversionTable=BINARY is not supported in EGL. The migration tool

converts this value exactly as it is so that there is a place holder in the EGL

linkage part. However, you must modify the value.

– You might need to add calllink entries. EGL requires calllink entries for the

following situations:

- If a generated Java program calls a native C++ or a VAGen generated

program, it is always a remote call even if the programs are running on the

same workstation. A calllink entry is required.

- If you used the VAGen generation option /system=JAVAWRAPPER for a

called program, you must create an EGL calllink entry with the attribute

javaWrapper=″YES″. If you do not have the entry, EGL does not generate

the Java wrapper.

- If you generate Java and a called program name conflicts with an EGL

reserved word, you must create an EGL calllink entry and set the alias

attribute to the actual name of the called program.

Chapter 9. Completing your migration 189

v For fileLink, conversionTable=BINARY is not supported in EGL. The migration

tool converts this value exactly as it is so that there is a place holder in the EGL

linkage part. However, you must modify the value.

v For asynchLink (VAGen crtxlink), conversionTable=BINARY is not supported in

EGL. The migration tool converts this value exactly as it is so that there is a

place holder in the EGL linkage part. However, you must modify the value.

v The EGL Transfer To Program linkage information is the equivalent of the

VAGen dxfrlink entry. If you generate for Java and use the VAGen XFER

statement, you might need to add EGL Transfer to Transaction entries. Refer to

the online helps for information about this new linkage entry.

Reviewing your EGL resource association parts

The migration tool converts VAGen resource association parts to EGL resource

associations parts. However, some VAGen options have no EGL equivalent. In

addition, EGL has several new resource association options that you might need to

set. You might see errors in the Problems view due to either of these changes. See

Appendix E, “IWN.xxx messages in the Problems view,” on page 391 for help in

resolving common messages in the Problems view that are a result of the migration

process. Also refer to the online helps for details about the resource association

options that are supported for your environment. You need to perform the

following steps regardless of whether you used Stage 1 – 3 migration or single file

migration:

v Review and resolve the messages in the migration log and in the Problems view.

You might need a text editor to resolve some of the problems.

v Not all of the file types from VisualAge Generator are supported in EGL. For

example, BTRIEVE and MFCOBOL are no longer supported. The migration tool

converts these unsupported options exactly as they are so that there is a place

holder in the resource association part. This ensures that there is an error in the

Problems view as a reminder that you must modify the resource associations

part to specify the option you want to use with EGL. Depending on the EGL file

type option you select, there might be additional attributes you must set for the

resource association entry.

v Review the online helps for the FormFeedOnClose and text attributes to determine

if you need to set these values for your environment. In VisualAge Generator,

the equivalent options, /noff and /text respectively, can only be specified in a

runtime resource association file for the workstation environment. Therefore,

these options are not set by the migration tool because the tool only processes

resource association parts.

Establishing a bind control part to use as a template

VisualAge Generator uses a bind control template to create default bind control

commands. The default VAGen template binds a DB2 plan, but you might have

modified the template so that it binds a package or made other changes to conform

to the standards of your organization. The VAGen templates are stored outside the

workspace in files named EFK2MBDx.tpl where x is a letter. Bind control parts are

only required if you need to do a special bind for a particular program. Table 65

shows the VAGen bind control templates based on the runtime environment and

database access.

 Table 65. VAGen bind command templates

Environment and Database Access VisualAge Generator BIND Template

MVS CICS - with DB2 EFK2MBDA

MVS Batch - with DL/I and DB2 EFK2MBDA

190 Rational Software Development Platform: VisualAge Generator to EGL Migration Guide

Table 65. VAGen bind command templates (continued)

Environment and Database Access VisualAge Generator BIND Template

MVS Batch - with DB2 only EFK2MBDD

IMS/VS- with DL/I with DB2 work

database

EFK2MBDC

IMS/VS- with DL/I and DB2 with DB2

work database

EFK2MBDB

IMS/VS- with DL/I and DB2 without DB2

work database

EFK2MBDA

IMS BMP - with DL/I and DB2 EFK2MBDA

EGL does not use bind control templates. Instead EGL requires a bind control part.

If you bind packages, you can achieve an effect similar to VisualAge Generator

templates by creating an EGL bind control part that contains a template to use for

all the binds and store this part in your workspace.

Note: The technique described in this section does not work if you bind plans. See

“Establishing a program-specific bind control part” on page 192 if you bind

plans.

If you modified the VAGen bind control template so that you bind a package for

each program, you can adapt that template for use as an EGL bind control part. It

is recommended that you put this bind control part in the same file with other

control parts. For example, you might have a VAGen bind control template that

looks like the following:

DSN SYSTEM(%MYDB2SUBSYSTEM%)

BIND PACKAGE(%MYCOLLECTIONNAME%) -

 MEMBER(%EZEMBR%) -

 .

 .

 .

In the previous example, MYDB2SUBSYSTEM and MYCOLLECTIONNAME are

symbolic parameters you set in your VAGen generation options and EZEMBR is

set automatically with the name of the program currently being generated.

For binding packages, the EGL bind control part that you need to create is very

similar to the VAGen template, but requires 3 additional lines and a change to the

EZEMBR symbolic parameter. The corresponding EGL bind control part looks like

the following:

TSOLIB ACTIVATE DA(’%DSNLOAD%’)

ALLOC FI(DBRMLIB) SHR DA(’%EZEPID%.%SYSTEM%.DBRMLIB’ +

’%ELA%.SELADBRM’)

DSN SYSTEM(%MYDB2SUBSYSTEM%)

BIND PACKAGE(%MYCOLLECTIONNAME%) -

 MEMBER(%EZEALIAS%) -

 .

 .

 .

DSNLOAD, EZEPID, and ELA all have the same meaning as they did in VisualAge

Generator. EZEALIAS is the EGL replacement for EZEMBR when you need the

name of the program being generated in a bind control part. SYSTEM is the EGL

replacement for EZEENV. You might need to modify the first 3 lines of the bind

control part if you use different data set naming conventions on your EGL build

Chapter 9. Completing your migration 191

server. Contact the person who installed and configured the EGL build server to

determine what the additional 3 lines need to be based on the naming conventions

for your organization. You might also need to modify your EGL build descriptor

options to set the projectID build descriptor option and the DSNLOAD and ELA

symbolic parameters if you did not set these values in VisualAge Generator. See

“Symbolic parameters” on page 346 for changes to the names of the symbolic

parameters. Also see the online helps for more information about using a template

for the EGL bind control part and setting the values of EGL symbolic parameters.

In addition to creating the EGL bind control part to serve as a template, you must

also modify your build descriptor parts to include the bind build descriptor option

to point to your bind control part. It is recommended that you add the bind build

descriptor option to one of your existing, common build descriptor parts to

minimize the number of build descriptor parts you need to modify.

Note: Be sure to compare the VAGen bind control templates for any of your target

environments. If the templates are different, you might be able to add

additional symbolic parameters to support the differences. Alternatively, you

might need to set different build descriptor options on a program basis to

point to different EGL bind control parts that are needed as templates for

different target environments.

Establishing a program-specific bind control part

If you bind plans in VisualAge Generator, then generally each program requires a

different bind command. In this case, you need a program-specific bind command

to bind a plan for the program with all the other programs that are in the same

run unit. The typical way to do this is to create a bind control part called

xxxxx.BND, where xxxxx is the name of the program. You then set the VAGen

generation option /BIND=BND to specify the suffix that you want VisualAge

Generator to use when searching for a program-specific bind command. The .BND

suffix can also be used if you bind packages for the rare situations in which one

program requires something different from what the template provides.

The EGL bind build descriptor option does not permit you to specify a suffix.

Instead, the bind build descriptor option must specify the name of a specific bind

control part. In EGL, if you do not specify the bind build descriptor option, then

EGL looks for a bind control part with the same name as the program. In general,

the easiest technique is to bind packages and follow the process described in

“Establishing a bind control part to use as a template” on page 190. However, if

you want to bind plans or if you have the situation in which one program requires

something other than what is provided by the bind control part template, you can

create program-specific bind control parts.

If you have VAGen program-specific bind control parts that used the default .BND

suffix, then the migration tool automatically removes the .BND suffix for you and

adds the additional statements required for an EGL bind control part. Assuming

that your naming convention was programName.BND and you always have

program-specific bind command parts, then you do not need to specify the EGL

bind build descriptor option for this program. However, if you are using the EGL

bind build descriptor to specify a bind control part for most programs to use as a

template and you need to provide a program-specific bind control part for a

program, then you must create a build descriptor part for this specific program

and set the bind build descriptor option to point to the program-specific bind

control part. Otherwise, EGL will pick up the bind control part that is the template

because that is what your normal bind build descriptor option specifies.

192 Rational Software Development Platform: VisualAge Generator to EGL Migration Guide

Reviewing linkedit commands

VisualAge Generator provides default linkedit commands based on the target

environment and database access. However, in some cases, you might have a

program that requires specific linkedit commands. (For example, to link in a PL/I

program for the MVS Batch environment.) The typical way to do this is to create a

linkedit part called xxxxx.LKG, where xxxxx is the name of the program. You then

set the VAGen generation option /LINKEDIT=LKG to specify the suffix that you

want VisualAge Generator to use when searching for the program-specific linkedit

command.

The EGL linkEdit build descriptor option does not permit you to specify a suffix.

Instead, the linkEdit build descriptor option must specify the name of a specific

linkedit part. In EGL, if you do not specify the linkEdit build descriptor option,

then EGL looks for a linkedit part with the same name as the program. If EGL

does not find a linkedit part with the same name as the program, then EGL creates

default linkedit commands based on the target environment and database access

similar to what VisualAge Generator does. Therefore, the only time you need to

specify the linkEdit build descriptor option is if you create a linkedit part with a

different name from the program. You might need to do this if you generate the

same program for several COBOL environments.

If you have VAGen program-specific linkedit parts that used the default .LKG

suffix, then the migration tool automatically removes the .LKG suffix for you.

Assuming that your naming convention was programName.LKG, then you do not

need to specify the EGL linkedit build descriptor option for this program. EGL will

find the program-specific part first, before it attempts to create a default linkedit

command.

Converting VAGen preparation templates and procedures to

EGL build scripts

In VisualAge Generator, for COBOL generation, preparation templates are used to

control the preparation process. The template that is used depends on the type of

part that is generated, the runtime environment, and, for program parts, the type

of database access. The /TEMPLATES generation option points to the drive and

directory that contains the preparation templates. The templates vary by

environment as follows:

v For the MVS and VSE runtime environments, preparation templates are used to

generate the JCL necessary to do the DB2 precompile, CICS translate, COBOL

compile, link edit, and bind. The preparation templates invoke JCL procedures

to provide the actual steps in the preparation process.

v For the OS/400 runtime environment, preparation templates are used to

generate the control language (CL) to do the compile and bind.

In EGL, the preparation process is handled as follows:

v For zSeries and iSeries, preparation is handled by an EGL build server. The EGL

build scripts merge the information previously contained in the VAGen

preparation templates and preparation procedures.

v For VSE, the preparation process is handled using preparation templates and

procedures similar to the process in VisualAge Generator. However, the template

and procedure names have changed. Refer to the VisualAge Generator EGL Plug-in

for VSE Reference for details.

Chapter 9. Completing your migration 193

For zSeries, review your VAGen preparation templates and procedures to

determine whether you customized them. If so, the best way to modify and debug

an EGL build script is as follows:

v Specify prep=″NO″ in your build descriptor options.

v Generate a program for your runtime environment. Review the preparation file

that is created to determine the name of the build script that is being used for

this type of program, database access, and runtime environment.

v Manually upload the outputs of generation to the data sets you plan to use on

the z/OS host.

v Create preparation JCL for the program. You can use your VAGen preparation

templates and procedures as a starting point and then modify them to point to

the EGL data sets. Also compare the preparation templates and procedures to

the build scripts supplied by EGL to determine if there are additional steps,

libraries, and so on required for EGL.

v Test the preparation JCL until you are satisfied that your modifications are

correct.

v Convert the preparation JCL to pseudo-JCL so it can be used as a build script.

For details, refer to the EGL Server Guide.

v Specify prep=″YES″ in your build descriptor options.

v Generate the program again for your runtime environment. The outputs of

generation should now be uploaded and prepared automatically using the build

server.

v Repeat the process for programs that access each type of database in each

runtime environment. Be sure to generate FormGroups (with both text and print

forms) and DataTables for all your runtime environments because these use

different build scripts.

For zSeries, also see “Preparation templates and procedures” on page 348 for a list

of the VAGen templates and procedures and their corresponding EGL build scripts.

VisualAge Generator also uses bind control templates for the MVS runtime

environments. See “Establishing a bind control part to use as a template” on page

190 for details of how to convert the MVS bind control templates.

For iSeries, refer to the WebSphere Development Studio Client for iSeries Advanced

Edition EGL Server Guide for iSeries for information about how to customize the

build script.

Converting VAGen runtime templates

In VisualAge Generator, runtime templates are used to generate the following:

v Sample runtime JCL for the MVS Batch and IMS BMP runtime environments.

v Sample runtime JCL for the VSE Batch environment.

v Sample control language for the iSeries environment.

The /TEMPLATES generation option points to the drive and directory that

contains the runtime templates. The template that is used depends on the type of

program, the runtime environment, and the type of file or database access. There

are 3 types of runtime JCL templates for MVS Batch, IMS BMP, and VSE as

follows:

v Execution JCL templates that create the main portion of the sample runtime JCL.

194 Rational Software Development Platform: VisualAge Generator to EGL Migration Guide

v File and database allocation templates that create DD statements that are

included in the sample JCL for DL/I databases, serial, indexed, or relative files

based on the runtime environment and the file implementation specified by the

resource association information.

v File and database allocation placeholder templates that create comments that are

included in the sample JCL when the application does something that might

require additional DD statements, but the information is not available to

generation. For example, if ProgramA calls ProgramB, when you generate

ProgramA, there is no way to determine the DD statements required by

ProgramB. The file and database allocation placeholder templates include a

comment in the sample runtime JCL for ProgramA to indicate that it calls

ProgramB.

Similarly, for OS/400, there are several runtime CL templates.

In EGL, there are also runtime templates. The templateDir build descriptor option

points to the directory where the templates reside. The default directory is the

following subdirectory within your product installation directory:

eclipse\plugins\com.ibm.etools.egl.generators.cobol_version\MVStemplates

eclipse\plugins\com.ibm.etools.egl.generators.cobol_version\iSeriesTemplates

version is the highest version level of COBOL generation that you have installed.

If you need to tailor the EGL runtime JCL templates, do the following:

v Create your own directory outside the RAD installation directory. This simplifies

installing EGL maintenance because you do not have to worry about overlaying

your customized templates.

v Consider putting this directory on a shared drive where it can be accessed by all

developers. This makes it easier to change a template because you do not have

to distribute the new template to all the developer workstations.

v For a list of the VAGen runtime templates and the corresponding EGL runtime

templates, see the following:

– For zSeries and iSeries, see “Runtime templates” on page 350.

– For VSE, refer to the VisualAge Generator EGL Plug-in for VSE Reference for

details on any template changes.

Use your VAGen runtime templates as a starting point and compare each

template to the corresponding EGL template to determine the tailoring you

might require. Be sure to change the VAGen symbolic parameters to the

corresponding EGL symbolic parameters as shown in “Symbolic parameters” on

page 346.

Converting the VAGen reserved words file

In VisualAge Generator, the /RESVWORD generation option points to the drive,

directory, and file name of an optional reserved words file. This file contains all the

COBOL, SQL, and CICS reserved words that are not permitted as part or field

names in the generated COBOL programs. The default reserved words file is

shipped with VisualAge Generator. If you specified the /RESVWORD generation

option, you probably added additional words to the list. If you never made

modifications to the reserved words list, you can skip this section.

In EGL, the reserved words are predefined in the COBOL generator. The EGL

reserved words file only contains your additions to the list.

Chapter 9. Completing your migration 195

Consider whether you still really need additions to the EGL reserved word list. If

so, create a file on the workstation with a list of the additional words you require.

Then modify your EGL build descriptor parts to include the reservedWord build

descriptor option and point this option to your reserved words file. You might

want to put the reserved words file on a shared drive so that everyone can access

a single copy of the file rather than propagating the file to every developer’s

workstation. This technique simplifies making a change to the reserved words file.

Reviewing your VGWebTransactions

You should consider the following when reviewing your migrated

VGWebTransaction programs:

v When you deploy or use an EGL-generated bean, you must regenerate all the

VGUIRecords that will be included in the same WAR file. You must also

regenerate all the corresponding VGWebTransaction programs.

v If the EGL package name differs from the VAGen package name, you must

update your JSPs and properties files. The package name might have changed

for any of the following reasons:

– You used the Stage 1 migration tool renaming rules to rename packages

because they conflict with EGL reserved words.

– You used the Stage 1 migration tool renaming rules or modified the Stage 1

tool to consolidate packages in EGL.

– You used the VAGen /packagename generation option to specify the runtime

package name, which can be different from the package name of the VAGen

source code. In EGL, the runtime package name is always the same as the

package name of the EGL source.
v You can use your modified JSPs from VisualAge Generator. However, you might

need to make some modifications in the following situations:

– If the runtime package name has changed, you must modify the JSP to

specify the new package name.
v To deploy your EGL Web transactions, refer to the online helps for assistance. Be

sure to do the following:

– Review and modify the default gw.properties file in the project’s JavaSource

folder. Be sure to set the hptEntryPage and the hptEntryApp values. You might

be able to copy this information from the corresponding gw.properties file in

your VisualAge Generator system. You might need to set additional options

depending on the modifications you made to the VisualAge Generator

gw.properties file. The hptDisableRMIIDManager option was added in a

VisualAge Generator FixPak. If this option is new for you, review the EGL

online helps for assistance in setting the value.

– Review and modify the default csogw.properties file in the project’s

JavaSource folder. Be sure to include the information to specify which

applications are to be found on which server. You might be able to copy this

information from the corresponding csogw.properties file in your VisualAge

Generator system. You might need to set additional options depending on the

modifications you made to the VisualAge Generator csogw.properties file.

– Review and modify the default VAGen1EntryPage.jsp in the project’s

WebContent folder. Be sure to update the OPTION information for hptAppId

to include the names of your VGWebTransaction programs and the associated

text that you want to display for each program in the list. You might be able

to copy this information from the corresponding JSP file in your VisualAge

Generator system.

– Generate the project.

196 Rational Software Development Platform: VisualAge Generator to EGL Migration Guide

– Create an Enterprise Application Resource (EAR) project as follows:

- From the workbench window, in the Navigator or Project Explorer view,

select New -> Other -> J2EE -> Enterprise Application Project.

- Enter the Name of the EAR project.

- Select Next.

- Select the projects to include in the EAR Project.

- Select Finish.
– Define a Web Application Server.

– Add the EAR Project to the server.

– Run the application by selecting the EGLWebStartup.jsp in the project’s

WebContent folder and then selecting Run -> Run on Server from the context

menu.

Preparing for debugging

You should do the following to prepare for debugging:

v From the workbench window, select Window -> Preferences -> EGL -> Debug.

Refer to the online helps to determine which, if any, of these preferences you

need to set for your environment. For example, if you used the VAGen Test

preference to Run in EBCDIC mode, you should set the EGL Debug preference

Character Encoding to the EBCDIC code page for your host system

v Also review the EGL-> Default Build Descriptor preferences. You might want

to set the default Debug build descriptor for your entire workspace.

Alternatively, you can set the default Debug build descriptor for a project, EGL

source folder, package, or file.

v If you are calling generated EGL or non-EGL programs on a remote CICS system

from the debugger, you need to configure and use a CICS Transaction Gateway

Server. Direct calls to CICS using CICS Client or CICS Transaction Gateway are

no longer supported.

Installing the EGL server product

For z/OS, the EGL server product that you select must be installed in a separate

SMP/E zone and have different target libraries from the VisualAge Generator

Server for MVS, VSE, and VM (VAGen server product).

If you placed any of the VAGen server product load modules in the LPA, you must

replace them with the EGL server product load modules before migration is

complete. When you make this change be sure to avoid having a combination of

modules from VAGen server product and the EGL server product because this will

cause unpredictable results. Therefore, if you removed the VAGen server product

load modules from the VAGen SELALMD load library when you originally placed

the load modules in the LPA, do the following to keep the sets of load modules

consistent:

v Put the VAGen modules back into the VAGen SELALMD load library.

v Remove the VAGen load modules from the LPA.

v Add the EGL server product load modules to the LPA.

v Remove the EGL server product load modules from the EGL SELALMD load

library

Even though EGL uses a build server for the preparation process, the EGL server

product includes the same preparation JCL procedures as the VAGen server

product. The EGL server product is also compatible with VAGen-generated

Chapter 9. Completing your migration 197

programs. Therefore, you can migrate to the EGL server product before you

migrate your source code to EGL. For example, your IMS or CICS regions might

evolve over time as follows:

v A production region with the VAGen server load library and an application load

library with VAGen-generated programs. A test region that is identical to the

production region.

v A production region with the VAGen server load library and an application load

library with VAGen-generated programs. A test region with the EGL server load

library and an application load library with VAGen-generated programs so that

you can ensure that existing VAGen programs run the same as before.

Optionally, a second test region with the EGL server load library and an

application load library with EGL-generated programs so that you can test

programs during your pilot migration.

v A production region with the EGL server load library and an application load

library with VAGen-generated programs. A test region with the EGL server load

library and an application load library with VAGen-generated programs so that

you can continue developing and maintaining programs in VisualAge Generator

during your pilot migration. A second test region with EGL server load library

and an application load library with EGL-generated programs so that you can

test EGL programs during your pilot migration.

v A production region with the EGL server load library with a mixture of

VAGen-generated and EGL-generated programs. A test region with the EGL

server load library with a mixture of VAGen-generated and EGL-generated

programs. The test region has more EGL-generated programs than the

production region. If you migrate all your source code to EGL at the same time,

you can skip this configuration of regions.

v A production region with the EGL server load library with EGL-generated

programs. A test region that is identical to the production region.

Generating and testing with COBOL generation

You should do the following to prepare for COBOL generation:

v You might want to create another version of the EGL projects and packages in

your source code repository at this time. This provides another baseline of code

that reflects the changes you made manually and before generation.

v If you are generating for VSE, follow the directions in the VisualAge Generator

EGL Plug-in for VSE Reference Manual.

v If you are generating for z/OS, be sure that the EGL runtime server is installed

with all of the latest PTFs.

v If you are generating for iSeries, be sure that the EGL runtime server for iSeries

has been installed in your host environment with all the latest PTFs.

v Be sure the EGL build server is installed with all of the latest PTFs. Also, be sure

it is configured in your host environment. In VisualAge Generator, customization

was done to the preparation process for z/OS and iSeries by changing

preparation templates on the workstation. In EGL, this customization is done on

the host machine. See the online helps for more information regarding if

customization is still needed and how the customization is done for each target

host environment.

v Contact the person who installed and configured the EGL build server. Be sure

you understand any changes to the naming conventions for the host data sets

that contain the outputs of generation and preparation. For example, in

VisualAge Generator when you generate for MVS Batch, the default name of the

data sets is xxxx.MVSBATCH.yyyy, where xxxx is the high-level qualifier you

specify in the /projectid generation option and yyyy is the type of code. (For

198 Rational Software Development Platform: VisualAge Generator to EGL Migration Guide

example, EZESRC for the COBOL source.) With EGL, because the target

environment names have changed, the corresponding default data set names are

xxxx.ZOSBATCH.yyyy. This means that you might need to define a new group of

data sets on the host.

v Generate your programs and dataTables. When you generate the programs, use

the following build descriptor options:

– genFormGroup=″YES″

– genHelpFormGroup=″YES″

– genDataTables=″NO″

This enables you to generate the formGroups with the programs that use them,

but to only generate the dataTables one time regardless of the number of

programs that use the dataTable. Resolve any validation errors that are caught

during generation.

v VAGen and EGL create the names of COBOL records and items differently. The

EGL names result in a more readable COBOL program, but can result in a

generated COBOL program that exceeds the SQL statement precompiler limits,

depending on your SQL product. The following are examples of precompiler

limits:

– Maximum number of processed lines. All SQL statements must occur in the

program prior to this limit. COBOL generation places the SQL statements as

early as possible in the Procedure Division. However, a program might

encounter this limit if it has many SQL functions or large numbers of data

items in records or on forms.

– Maximum number of unique host variables. Each host variable that allows

nulls also has an indicator variable that counts toward the maximum. By

default, the VAGen to EGL Migration tool includes the isNullable=yes

property for each field in the SQL records to preserve the VAGen behavior.

– Maximum number of lines or characters for an SQL statement.

If any of the SQL precompiler limits is exceeded, you need to make one or more

of the following changes to the program:

– If some of the columns in your SQL tables are defined as NOT NULL, remove

the isNullable=yes property from the corresponding field in the EGL SQL

record definitions. This reduces the number of unique host variables which in

turn reduces the number of characters and lines for an SQL statement and the

total number of lines for the program. This technique has the biggest impact

for the least amount of work and also has the potential of improving

performance.

– Review the use of default SQL statements. If the default statements are

retrieving more columns than you actually need, modify the statements to

specify only the required columns.

– Shorten the name of the SQL record.

– Split the SQL statements into multiple statements. For example, change one

get statement into multiple get statements and retrieve a subset of the

columns in each statement.

– Split the program into multiple programs.
v Test the generated code.

v You might want to create another version of the EGL projects and packages in

your source code repository at this time. This provides another baseline of code

that reflects the changes you made as a result of problems found during

generation and testing.

Chapter 9. Completing your migration 199

Generating and testing with Java generation

You should do the following to prepare for Java generation:

v You might want to create another version of the EGL projects and packages in

your source code repository at this time. This provides another baseline of code

that reflects the changes you made by hand and before generation.

v Generate your programs and dataTables. When you generate the programs, use

the following build descriptor options:

– genFormGroup=″YES″

– genHelpFormGroup=″YES″

– genDataTables=″NO″

This enables you to generate the formGroups with the programs that use them,

but to only generate the dataTables one time regardless of the number of

programs that use the dataTable. Resolve any validation errors that are caught

during generation.

v If you modified the VAGen product message text, you can make similar

modifications to the EGL message text.

v Test the generated code.

v You might want to create another version of the EGL projects and packages in

your source code repository at this time. This provides another baseline of code

that reflects the changes you made as a result of problems found during

generation and testing.

Reviewing your standards

You might want to review your current coding standards and set new standards to

be used for any new code that is written. For example, if you generate COBOL,

some standards that you might want to consider:

v Use underscore rather than hyphens in your part names. COBOL programs do

not permit the use of underscore for names. However, COBOL generation

automatically changes the underscore to a hyphen, so the generated COBOL will

still be readable. The only time an alias name is assigned is if there are duplicate

part names after changing the underscore to a hyphen.

v To improve the readability of generated COBOL code, avoid the use of names

that cause generation to assign an alias. You can do this by using the following

naming conventions:

– Record and function names should be 18 or fewer characters. This is the same

limit as in VisualAge Generator.

– Data item names should be 27 or fewer characters. This is slightly less than

the recommended limit of 30 characters and the maximum of 32 characters

for VisualAge Generator.
v Program and dataTable names can now be 8 characters.

Planning for dual maintenance of your source code

You can migrate your VAGen source code to EGL. However, you cannot migrate

an EGL source file back to VisualAge Generator. If you are not migrating all of

your VAGen source code at the same time and have parts that are needed by both

the VAGen and the EGL code, you need to make changes to the common parts in

one of the following ways:

v Make the change in both the VAGen and EGL versions of the part.

v Make the change in VAGen and then export an external source format file for

the part. Depending on the changes, to ensure cross-part migration can be done,

200 Rational Software Development Platform: VisualAge Generator to EGL Migration Guide

you might need to include parts used by the changed part, as well as parts that

use the changed part in the external source format file. Import the external

source file into a new file in EGL. Then compare the changes for the

newly-migrated parts to the original EGL parts and move the changes to the

correct location within the EGL workspace.

The simplest solution to the dual maintenance problem is to avoid the problem

completely by doing the following:

v Freeze your VAGen development and maintenance while you are migrating to

EGL.

v Generate and test all the VAGen programs that are currently work-in-progress

and move them into production. This enables you to migrate just the production

version of your source code.

If you cannot migrate everything at the same time, try to limit the changes to a

small number of parts and then make the changes in both the VAGen and the EGL

versions of the part. Making the changes in both places can be easier than

changing the part in VAGen and migrating it to EGL again because you do not

have to determine all the related parts that are required for cross-part migration

and you do not have to move the newly-migrated parts to the correct location

within the EGL workspace.

Eliminating the use of VisualAge Generator Compatibility

mode

VAGen Compatibility mode supports a number of behaviors that make it easier to

preserve the behavior of your VAGen programs. It is not necessary to turn off

VAGen Compatibility mode. However, particularly if you use only a few of these

compatibility behaviors, you might want to eliminate the use of VAGen

Compatibility mode. The following list describes the EGL behavior when VAGen

Compatibility mode is turned on and provides information that might be helpful

in removing the need to use the behavior.

v EGL permits the use of the hyphen (-) and the national language characters @

and # in part names. If you plan to eliminate the use of VAGen Compatibility

mode, you should create a Rename User Exit to use during Stage 2 migration.

Create the Rename User Exit so that it eliminates the use of the hyphen, @, and

#. For example, if you never use the underscore in your VAGen part names, you

can create a Rename User Exit that renames parts by changing the hyphen to an

underscore. See “VAGen Migration Preferences” on page 157 for details of how

to specify a Rename User Exit for Stage 2 migration. If you turn off VAGen

Compatibility mode, there will be an error on the Problems list for any part

name or variable name that contains a hyphen, @ or #. You can correct the

problem by changing the name.

v EGL permits the use of the primitive data types numc and pacf. numc is similar

to num except that numc uses the C as the positive sign indicator. pacf is similar

to decimal (VAGen PACK) except that pacf uses the F as the positive sign

indicator. If you turn off VAGen Compatibility mode, there will be an error on

the Problems list for any dataItem definition or variable declaration that specifies

a primitive type of numc or pacf. You might be able to correct the problem by

changing the primitive type to num or decimal respectively and then making

any related program changes required for the new positive sign indicator.

v EGL defaults the subscript to 1 for single-dimension, structure-field arrays.

Single-dimension, structure-field arrays are the EGL equivalent of a VAGen array

or multiply occurring item in a record, map or table. If you turn off VAGen

Compatibility mode, there will be an error on the Problems list for any

Chapter 9. Completing your migration 201

statement that specifies a structure-field array that now requires a subscript. To

correct the problem, you must modify the statement to explicitly specify a

subscript of 1.

v EGL permits the deleteAfterUse property on a use declaration for a dataTable. The

deleteAfterUse property is the replacement for the VAGen Keep After Use

property. If you turn off VAGen Compatibility mode, there will be an error on

the Problems list for each program that contains a use declaration that specifies

deleteAfterUse. You can correct the problem by removing the deleteAfterUse

property, in which case EGL treats the table similar to a VAGen table that

specifies Keep After Use = yes.

If your production programs are already generated using VisualAge Generator

Version 4.5 FixPak 4, there is no impact of eliminating the EGL deleteAfterUse

property. If you are migrating from Cross System Product or an earlier version

of VisualAge Generator, you should thoroughly test any program that you

change to eliminate the deleteAfterUse property.

If you specify the VAGen Migration Preference Do not include deleteAfterUse for

tables, the migration tool automatically omits the deleteAfterUse property and

issues a warning message for the affected program and table.

v EGL permits the sqlDataCode property in an SQL record. The migration tool

preserves the VAGen SQL Data Code property to specify the SQL type for hex

items (for example, an SQL timestamp) or if the primitive type is unknown

because a shared data item is not included in the migration set. You can

minimize migration to the EGL sqlDataCode property by always including the

data item parts in your migration set. This avoids the migration tool including

the sqlDataCode due to an unknown primitive type. However, the migration

tool must still include the sqlDataCode for hex items. If you turn off VAGen

Compatibility mode, there will be an error on the Problems list for any SQL field

that specifies the sqlDataCode property. You can correct the problem by

changing the field to use one of the new EGL data types and then making any

related program changes to use this new data type. For variable length fields,

include the sqlVariableLen = yes property.

v EGL supports the call statement options of externallyDefined and noRefresh. These

are the replacements for the VAGen NONCSP and NOMAPS options on the call

statement. If you turn off VAGen Compatibility mode, there will be an error on

the Problems list for any call statement that specifies externallyDefined or

noRefresh. You can correct the problem by removing these options from the call

statement and specifying the corresponding EGL replacement options in a

linkage options entry for the called program. Be sure to point to the linkage

options part in your build descriptor options.

v EGL supports the transfer and show statement externallyDefined option. This is

the replacement for the VAGen NONCSP option on the DXFR and XFER

statements. If you turn off VAGen Compatibility mode, there will be an error on

the Problems list for any transfer or show statement that specifies

externallyDefined. You can correct the problem by removing this option from the

transfer or show statement and specifying the corresponding EGL replacement

option in a linkage options entry for the transfer from and to programs. Be sure

to point to the linkage options part in your build descriptor options. In the

linkage options part, use a transfer link entry in the form of either transfer to

program or transfer to transaction entry, corresponding to the type of transfer

statement. For the show statement, the transfer link entry must be in the form of

a transfer to transaction entry.

v EGL implements a display printForm statement in the same way as a print

printForm statement. You can minimize the use of display printForm by

including the maps in your migration set. This enables the migration tool to

202 Rational Software Development Platform: VisualAge Generator to EGL Migration Guide

correctly migrate to a display statement for text maps and a print statement for

printer maps. If you turn off VAGen Compatibility mode, there will be an error

on the Problems list for each display printForm statement. You can correct the

problem by modifying the statement to be a print statement.

v EGL uses the value property of a form field only when displaying a field on the

screen that has not had a value assigned to it. The value property does not set

the initial value of the form field in storage. The migration tool includes the

value property when it migrates the map. If you turn off VAGen Compatibility

mode, EGL uses the value property to set the initial value of the form field in

storage. There might or might not be an error on the Problems list. For example,

in VisualAge Generator, a numeric map variable field can have an initial value

of ″MM/DD/YYYY″ to provide a value for the Map Editor Preview mode and

to provide output to the end user if the program does not move any data to the

field before the DISPLAY or CONVERSE I/O option. In this example, if you turn

off VAGen Compatibility mode, there is a message on the Problems list because

the value is not compatible with the num primitive type. However, if the initial

value is a number such as 5, there is no message on the Problems list, but the

program might not behave the same as in VisualAge Generator. If you turn off

VAGen Compatibility mode, in addition to correcting the messages on the

Problems list, you should also search your EGL forms for the value property and

then determine the program changes necessary to prevent any change in

behavior. This might include removing or changing the value property for the

form fields.

v EGL permits the use of the VGVar.handleSysLibraryErrors system variable. This is

the replacement for VAGen EZEREPLY, which controls setting of EZERT8 (EGL

sysVar.errorCode) for a call or EZE function invocation statement. If you turn off

VAGen Compatibility mode, there will be an error on the Problems list for each

statement that specifies VGVar.handleSysLibraryErrors. You can correct the

problem by removing the use of VGVar.handleSysLibraryErrors. If

VGVar.handleSysLibraryErrors is set to 1, then nest the call or function

invocation in a try ... onError ... end block. If VGVar.handleSysLibraryErrors is

set to 0, then do not add a try ... onError ... end block.

v If your release of EGL supports DL/I, then EGL permits the use of the

dliVar.handleHardDLIErrors system variable. This is the replacement for VAGen

EZEDLERR. In VAGen, EZEDLERR and EZEFEC (EGL

sysVar.handleHardIOErrors) work together to control error handling. If both

EZEDLERR and EZEFEC are 0 or an error routine is not specified, the program

ends if a hard I/O error occurs. If either EZEDLERR or EZEFEC is set to 1 and

an error routine is specified, the error routine gets control if a hard I/O error

occurs. In general EZEDLERR and EZEFEC are set at the beginning of the

program and then never changed. If you turn off VAGen Compatibility mode,

there will be an error on the Problems list for each statement that specifies

dliVar.handleHardDLIErrors. You need to review your program logic to

determine whether you can safely merge dliVar.handleHardDLIErrors with

sysVar.handleHardIOErrors. If sysVar.handleHardIOErrors is not used in the

program or if it is set only at the beginning of the program, it might be

relatively simple to merge dliVar.handleHardDLIErrors with

sysVar.handleHardIOErrors.

v EGL permits the use of the VGLib.getVAGSysType system function. The migration

tool declares a variable named customerPrefixEZESYS and initializes it in each

program to the results of VGLib.getVAGSysType. customerPrefix is the Renaming

prefix you specify during Stage 2 migration. VGLib.getVAGSysType provides the

original VAGen EZESYS system values (for example, MVSCICS or OS400) for

use when migrating statements other than IF, WHILE, or TEST. If you turn off

VAGen Compatibility, there will be an error on the Problems list for each

Chapter 9. Completing your migration 203

program for the statement that initializes customerPrefixEZESYS. You can correct

the problem by changing the program to remove the customerPrefixEZESYS

declaration and the initialization statement. When you save the program, there

will be an additional error on the Problems list for each statement that uses

customerPrefixEZESYS. To correct this error, you can change the statement to use

the EGL sysVar.systemType system variable, which provides the new EGL

system values. Depending on how customerPrefixEZESYS is being used, you

might also need to change the values in databases, files, or dataTables from the

old VAGen system values to the new EGL system values. See “EZESYS” on page

108, as well as “EZESYS state conditions” on page 302.

If you specify the VAGen Migration Preference Do not initialize old EZESYS

values, the migration tool automatically omits the variable declaration and

initialization statement from each program. There will be an error on the

Problems view for any statement that uses customerPrefixEZESYS.

v EGL permits the use of the VGLib.connectionService system function. This is the

replacement for VAGen EZECONCT system function, which provides a variety

of SQL connection services depending on the arguments you specify and your

runtime environment. If you turn off VAGen Compatibility mode, there will be

an error on the Problems list for each statement that uses

VGLib.connectionService. You can correct the error by changing to use one of the

new EGL specialized system functions (for example, sysLib.connect,

sysLib.disconnect, sysLib.disconnectAll, or sysLib.queryDatabase). Which EGL

system function you use depends on the arguments you specified for the VAGen

EZECONCT system function and your runtime environment. You should also

check for any use of VGVar.sqlIsolationLevel because this might affect your

choice of the EGL system function or the arguments that you need to specify for

it.

v EGL permits the use of the ConverseVar.segmentedMode system variable. This is

the replacement for VAGen EZESEGM, which enables you to switch between

segmented and nonsegmented mode in a CICS main transaction program at

runtime. If you turn off VAGen Compatibility mode, there will be an error on

the Problems list for each statement that uses ConverseVar.segmentedMode. In

many cases, because EZESEGM is rarely used, there might not be any errors on

the Problems list. If there is an error, removing the use of

ConverseVar.segmentedMode might require restructuring the program to avoid

the need to switch between segmented and nonsegmented mode.

v EGL permits the use of the VGVar.sqlIsolationLevel system variable. This is the

replacement for VAGen EZESQISL, which is used to control the SQL isolation

level in older releases of Cross System Product and VisualAge Generator for the

VSE runtime environments and in VisualAge Generator 4.5 for accessing ODBC

databases. If you turn off VAGen Compatibility mode, there will be an error on

the Problems list for each statement that uses VGVar.sqlIsolationLevel. In many

cases, because EZESQISL is rarely used, there might not be any error on the

Problems list. If there is an error, you might be able to remove

VGVar.sqlIsolationLevel entirely if it is not being used to control your program

logic. Alternatively, if VGVar.sqlIsolationLevel is used to control some of your

program logic, you can replace VGVar.sqlIsolationLevel with a new variable that

you declare in the program. Be sure to check for any use of

VGLib.connectionService because the behavior for that system function might

depend on the value in VGVar.sqlIsolationLevel.

v EGL supports even precision for decimal fields (VAGen PACK fields) by

incrementing the precision by 1 except for host variable references in SQL

WHERE clauses and the EGL prepare statement. If you turn off VAGen

Compatibility mode, there will not be an error on the Problems list. However,

the program might not run the same as in VisualAge Generator. Specifically,

204 Rational Software Development Platform: VisualAge Generator to EGL Migration Guide

decimal fields that have even precision might be too small for the data contained

in the database. In general you need to carefully evaluate each data item to

determine whether you can safely turn off VAGen Compatibility mode. In

VisualAge Generator, you can search all data item and record parts using the

References tool for the text string evensql = Y (one blank before and after the =

sign). This search can help you determine if you have any items or records that

specified even precision. In EGL, you can search for an even precision decimal

field by searching for decimal(2, decimal(4, decimal(18. If you did not use even

precision decimal fields, then you can safely turn off VAGen Compatibility

mode. If you did use even precision decimal fields, you need to consider the

performance impact on your SQL access of changing to the next higher odd

precision. SQL provides better performance for decimal fields if your EGL host

variables exactly match the precision of the SQL column definitions.

If you specify the VAGen Migration Preference Do not honor evensql=y for items or

variables, the migration tool automatically uses odd precision (or 18 if the item is

the maximum length) and issues a warning message for the affected data item

part or nonshared record item.

If you do turn off the VAGen Compatibility mode preference, be sure to remove

vagCompatibility=″YES″ from each of your build descriptor parts. If you specify

the VAGen Migration Preference Do not set compatibility mode, the migration tool

automatically omits vagCompatibility=″YES″ from each build descriptor part.

Chapter 9. Completing your migration 205

206 Rational Software Development Platform: VisualAge Generator to EGL Migration Guide

Part 6. Language and runtime differences

There are various language and runtime differences between VisualAge Generator

and EGL.

© Copyright IBM Corp. 2004, 2006 207

208 Rational Software Development Platform: VisualAge Generator to EGL Migration Guide

Chapter 10. Language and runtime differences

Language differences

See “Determining whether you can migrate to EGL” on page 8 for information

about areas in which EGL is not a complete replacement for VisualAge Generator

Developer.

See Chapter 3, “Handling ambiguous situations,” on page 61 for details about

VAGen language elements or migration strategies that do not allow a precise

migration to the EGL language.

See Appendix B, “Relationship of VisualAge Generator and EGL Language

Elements,” on page 227 for details about how each VAGen language element is

migrated to EGL.

Runtime differences

After you have migrated your source code to EGL, you should generate and

thoroughly test your code to ensure that it runs the same as in VisualAge

Generator. The specific runtime differences vary depending on the target

environment as follows:

v General differences.

v Differences in debug.

v Differences in generated COBOL.

v Differences in generated Java.

v Differences between host and workstation environments

v Differences between distributed CICS and native workstation environments.

v Differences between generated C++ and generated Java.

General differences

The following runtime behavioral differences can occur without any messages in

the migration log or the Problems view. The problems can occur during debug or

when running the generated Java or COBOL code:

v The following apply to text programs and print forms:

– A runtime error occurs if a form field is not long enough to contain all the

digits and formatting information (sign, decimal point, currency symbol, and

numeric separator).

– Non-default fill characters are always honored, even if the program does not

issue a SET formItem FULL statement.

– Arrays on forms always use the validation and formatting properties of the

first element of the array. This might result in slightly different behavior from

VisualAge Generator, which allowed some of these properties to vary for the

elements of the array. For details, see “Map arrays and attributes” on page 80.

– If any maps contained fields at row=0, column=0, be sure to test the

programs that use the corresponding forms for any differences in appearance

or behavior. For details, see “Fields at row=0, column=0” on page 82.

– For workstation platforms, including debug, the following key mappings are

used for textForms:

© Copyright IBM Corp. 2004, 2006 209

Table 66. Key mappings for textForms

3270 Keys VAGen mappings

EGL mappings on

Windows

EGL mappings on

Linux and AIX

PF1–PF12 F1–F12 F1–F12 F1–F12

PF13–PF24 Alt+F1–Alt+F12 Shift+F1–Shift+F12 press Ctrl+S and then

press F1–F12

PA1–PA3 Ctrl+F1–Ctrl+F3 Ctrl+F1–Ctrl+F3 press Ctrl+A and

then press F1–F3

Note:

- + indicates that you must press 2 keys simultaneously.

- For Linux and AIX, the Ctrl+S and Ctrl+A work as a toggle. If you press

the combination of keys by mistake, you can press them again to turn it off.

Pressing Ctrl+S and then pressing a key other than F1–F12 has no effect.

Similarly, pressing Ctrl+A and then pressing a key other than F1–F3 has no

effect.
v If a record that is a VAGen REDEFINED record is not available when migrating

a program, the migration tool does not include the EGL redefines property in the

data declarations. This results in two separate record areas, rather than a single

area with two definitions as in VisualAge Generator. Errors, including abends,

can result due to uninitialized or invalid data. See “Redefined records” on page

66 for details.

v Hard I/O errors occur in more situations in EGL than in VisualAge Generator:

– In VisualAge Generator, UNQ for non-SQL records is a soft error so the HRD

I/O error state is not set. In EGL, unique is a hard error so hardIOError also

tests true. See “I/O error values UNQ and DUP” on page 104 for details.

– For iSeries, the VAGen I/O error value LOK is migrated to the EGL deadlock

I/O error state. In VisualAge Generator, LOK is a soft error so the HRD I/O

error state is not set. In EGL, deadlock is a hard error so hardIOError also tests

true. See “I/O error value LOK” on page 106 for details.
v If the I/O error routine is not available when migrating a function, the migration

tool assumes that the I/O error routine is not a main function and converts to a

function invocation. In VisualAge Generator, if the I/O error routine is a main

function and an error occurs at runtime, VisualAge Generator clears the current

execution stack of functions and starts a new stack with just the main function

that is specified as the I/O error routine. This also clears out any storage for the

execution stack. In EGL, because the migration tool converted to a function

invocation, if an error occurs at runtime, EGL adds the main function to the

current execution stack rather than cleaning out the stack and starting a new

stack with just the main function. This has the potential for an infinite loop or a

large use of resources if functions have local storage or parameter lists. See “I/O

error routine” on page 90 for details.

Differences in SQL support

The differences in SQL support can affect program behavior in the following

situations:

v If you generate COBOL, the differences between DB2 on the host and JDBC used

by the debugger might affect the behavior of your program when you debug in

EGL.

210 Rational Software Development Platform: VisualAge Generator to EGL Migration Guide

v If you previously generated C++ and now generate Java, the differences between

DB2 or ODBC and JDBC used by Java generation might affect the behavior of

your program both when you debug in EGL and when you run the program in

the native workstation environment.

The following are differences in SQL behavior:

v ODBC is not supported in EGL. If you use an SQL database manager other than

DB2, you must obtain a JDBC driver for your database manager.

v JDBC does not support two-phase commit. Therefore, there are the following

differences:

– There are separate calls to the SQL manager and MQ series manager for

commit and rollback. Therefore, if a problem occurs, it is possible for one

resource to commit or rollback without the corresponding commit or rollback

for the other resource.

– EZECONCT (EGL VGLib.connectionService). In VisualAge Generator, the R

option for the unit of work argument changes the connection to another

database without ending the current connection. This permits you to update

multiple databases within the same unit of work. In EGL, the R option, as

well as the D1C, D2A, D2C, and D2E options for the unit of work argument

are all treated as though you specified D1E. D1E is a one-phase commit, but

does not automatically release the database connection. You must explicitly

request the DISC, DCURRENT, or DALL option to disconnect the database.

See the online helps for the VGLib.connectionService for details.
v JDBC always runs dynamic SQL. Generated COBOL (in both VAGen and EGL)

and generated C++ (in VAGen) use static SQL except when you use the VAGen

execution time statement build option (EGL prepare statement) or a table name

host variable. Therefore, there are the following differences:

– In dynamic mode, single row select can result in more than one row being

returned without setting sysVar.sqlCode to -811.
v JDBC handles code page conversion differently than DB2. If your database is on

the host and includes a char, dbchar, or mbchar SQL column defined as ″FOR

BIT DATA″, DB2 does not do any code page conversion. However, JDBC does

convert the data. If you have this situation, change the EGL SQL record

definition to add the asBytes=yes property for the field that corresponds to the

SQL column that is defined as ″FOR BIT DATA″.

v Other changes in the EZE words related to SQL when using JDBC:

– EZESQISL (EGL VGVar.sqlIsolationLevel). In VisualAge Generator, a value of

1 means you want cursor stability. In EGL a value of 1 means you want

serializable transactions.

– EZESQRRM (EGL VGVar.sqlerrmc) is not supported.

– EZESQWN6 (EGL VGVar.sqlwarn[7]) is not supported.

– EZESQLCA (EGL sysVar.sqlca) fields are limited. They do not include values

for EZESQRRM and EZESQWN6.

Differences in debug

There are some differences in debug that might affect your testing. If you generate

for COBOL environments, you need to be particularly aware of these differences

because debug does not provide the same support as generated COBOL in the

following areas:

v Differences for maps are as follows:

– Blink is not supported for text forms.

Chapter 10. Language and runtime differences 211

– The isDecimalDigit property is only supported for character fields. It is

implemented as a software edit, not as a hardware attribute. Numeric fields

also have a software edit. See “Map fields and the numeric hardware

attribute” on page 79 for details.
v For indexed records that have an alternate index record defined, the setting for

the DUP I/O error value differs from VisualAge Generator. For VisualAge

Generator, for a SET record SCAN followed by a SCAN or SCANBACK I/O

option, the DUP I/O error value is not set for the SET record SCAN statement.

The DUP I/O error value is set for each of the duplicate-keyed records other

than the last record retrieved with a duplicate key. For Java generation, a set

record position followed by a get next or get previous statement results in the

duplicate I/O error state being set on the set record position rather than on the

first duplicate-keyed record retrieved. The remaining duplicate-keyed records

result in the duplicate I/O error state being set the same as in VisualAge

Generator. The EGL duplicate state is set on all records other than the first and

last of the duplicate-keyed records. See the online helps for more information

about indexed records and alternate index records and their use with set record

position, get next and get previous.

v Interactive Test Facility (in VisualAge Generator) uses DB2 or ODBC. Generated

COBOL (in both VisualAge Generator and EGL) use DB2. Generated C++ (in

VisualAge Generator) uses DB2 or ODBC. EGL debug and Java generation use

JDBC. If you generate COBOL or previously generated C++, this results in

differences in when you debug your program using the EGL debugger. See

“Differences in SQL support” on page 210 for details.

v Handling of num or numc data that contains invalid data differs from VisualAge

Generator. In VisualAge Generator, invalid data, including blanks, is tolerated by

ITF for num and numc fields. If a num or numc field contains blanks, it is

treated as though the value is 0. For example, if the field is compared to 0, the

comparison tests true. If a num or numc field contains invalid data other than

blanks, the comparison tests false. In effect, this simulates the use of the COBOL

generation option /SPZERO, which specifies that blanks are tolerated in num

and numc fields and are treated as though the field contains 0. Any other use of

invalid data in the num or numc fields results in a runtime error, including an

abend. If you do not use the /SPZERO generation option, any invalid data in an

num or numc field, including blanks, results in a runtime error. The /SPZERO

generation option has no effect on bin, pack, or pacf fields. In EGL, the

spacesZero build descriptor option provides the same support as /SPZERO for

generated COBOL programs. However, the EGL debugger does not simulate the

use of spacesZero. Therefore, in the EGL debugger, if a num or numc field

contains blanks, the EGL debugger tests false when comparing the value to 0.

Differences in generated COBOL

The following differences occur for generated COBOL code:

v EGL generated COBOL text and basic programs are fully compatible with

VisualAge Generator programs. You do not have to regenerate or recompile a

VAGen program for either of the following situations:

– A VAGen program uses CALL, DXFR, or XFER as a way of transferring to an

EGL program.

– An EGL program uses call, transfer to program, transfer to transaction, or show as

a way of transferring to a VAGen program.

The restrictions on calling or transferring between EGL and VAGen programs

are similar to those for calling or transferring between two VAGen programs.

For example, a VAGen called program cannot use the DXFR or XFER statements

212 Rational Software Development Platform: VisualAge Generator to EGL Migration Guide

to transfer to other programs. Similarly, an EGL called program cannot use

transfer to program, transfer to transaction, or show to transfer to other programs.

v Differences for maps are as follows:

– The isDecimalDigit property is only supported for character fields. It is

implemented as a software edit, not as a hardware attribute. Numeric fields

also have a software edit. See “Map fields and the numeric hardware

attribute” on page 79 for details.

– The following device sizes are no longer supported: 6x40, 12x40, 16x64, and

255x60. See “Map groups, maps, and device sizes” on page 74 for details.

Differences in generated Java

The following differences occur for generated Java code:

v VAGen-generated Java programs use a vgj.properties file to control the runtime

environment. EGL-generated Java programs use either programName.properties

or rununit.properties, depending on the value of the genProperties build

descriptor option. See “vgj.properties” on page 354 for the correspondence

between the VisualAge Generator and EGL runtime properties.

v EGL generated Java programs are not fully compatible with VisualAge

Generator programs.

The following are supported:

– An EGL program can call a VAGen generated Java or C++ program using a

remote call. Similarly, a VAGen generated Java or C++ program can call an

EGL program using a remote call.

– An EGL VGWebTransaction program can use the show VGUI record statement

to indirectly transfer to a VAGen Web Transaction program. Similarly, a

VAGen Web Transaction program can use the XFER with a UI record

statement to indirectly transfer to an EGL VGWebTransaction program.

The following are not supported:

– An EGL program cannot call a VAGen generated Java or C++ program using

a local call. Similarly, a VAGen generated Java or C++ program cannot call an

EGL program using a local call.

– An EGL program cannot transfer to a VAGen program using the transfer to

program, transfer to transaction, or show textForm statements. Similarly, a VAGen

program cannot transfer to an EGL program using the DXFR or XFER

statements.

Differences between host and workstation environments

If you change from generating for a host environment (such as CICS) to generating

for a workstation environment (such as native AIX), you need to consider the

following:

v The collating sequence for the host environments is EBCDIC. The collating

sequence for Java generation is UNICODE. Therefore, you need to review the

following:

– Range match valid tables

– Specific values coded for a high-value or low-value of a key

– Comparison of keys for a 2-file match
v End users will need to know the following:

– The mapping for the function keys because workstation keyboards do not

typically have keys for PF13 - PF24 and PA1 - PA3.

Chapter 10. Language and runtime differences 213

– It is not necessary to enter SO/SI characters when shifting out/into DBCS

mode.
v The total length of all records passed on a CALL from AIX native to CICS

cannot exceed 32567. This is a CICS restriction. If you previously generated for

CICS and used the default parmform=COMMPTR, then the total length of all

records might have exceeded this limit. If you previously used

parmform=COMMDATA, then the total length of all records is within this limit.

v Also review the information in these sections:

– “Differences between distributed CICS and native workstation environments”

– “Differences between generated C++ and generated Java” on page 217

Differences between distributed CICS and native workstation

environments

To run generated EGL code in a workstation environment, you must change to run

as a native process instead of having the option to run under Transaction Series

(TX Series or CICS). The following list outlines the differences or changes that are

necessary to move from a CICS environment to a native environment. The list uses

VAGen terminology, but you must make the changes in the corresponding EGL

language elements. Refer to Appendix B, “Relationship of VisualAge Generator and

EGL Language Elements,” on page 227 to determine the corresponding EGL

language element.

v General differences are as follows:

– Multiple users cannot run in the same address space on a server. Users run

on their own workstations.

– Client unit of work is not supported.

– There is a change from C++ generation to Java generation. Be sure to review

the section on “Differences between generated C++ and generated Java” on

page 217.

– Be sure to test performance and scalability when migrating from CICS to

native environments.

– Communication protocols are different between CICS and native

environments. You must determine which protocol you plan to use and then

change your EGL linkage options parts and resource associations parts

accordingly.

– VAGen-generated programs for distributed CICS use environment variables to

control the runtime environment. EGL-generated Java programs use either

programName.properties or rununit.properties, depending on the value of the

genProperties build descriptor option. See “Runtime environment variables”

on page 352 for the correspondence between the VisualAge Generator

environment variables and the EGL runtime properties.
v The following CICS-specific special function words and service routines are not

supported in native environments:

– AUDIT (EGL sysLib.audit) for writing a CICS journal entry. You can create

your own non-EGL program named AUDIT to write similar information to a

file for the native environment.

– EZEPURGE (EGL sysLib.purge) for deleting a temporary storage queue. You

must remove references to sysLib.purge. Alternatively, you can check

sysVar.systemType and only use sysLib.purge when you are running in the

CICS for z/OS environment. If you use this technique, be sure to include the

EGL build descriptor option eliminateSystemDependentCode=″YES″

214 Rational Software Development Platform: VisualAge Generator to EGL Migration Guide

– EZELOC (EGL sysVar.remoteSystemID) for setting the location of a remote

file, remote program, or the location at which a remote transaction is to be

started using CREATX (EGL sysLib.startTransaction).
v CICS-specific resource associations are not supported in native environments.

You must change your resource associations part to use options that are

supported for EGL native environments. The following are CICS-specific

resource associations that are not supported for generation for a native

environment:

– CICS spool file.

– Transient data queue, including transient data queue with a trigger level of 1.

– Temporary storage queue.

– Local VSAM files, except for the AIX environment.
v The following CICS-supplied features are not supported in native environments:

– Security services.

– Database connection and retention.

– CICS file management, including the use of recoverable files.

– True segmentation support.

– Program management.
v Differences when transferring between programs are as follows:

– For main programs other than web transactions, the XFER statement in CICS

transfers to the next transaction ID. For native environments, the XFER

statement transfers to a program name. Therefore, all the EGL transfer to

transaction and show statements must be modified to specify the program

name.

– XFER or DXFR to non-VAGen programs is supported in the CICS

environment. For native environments, transfer to program, transfer to

transaction, and show are not supported to non-EGL programs.
v Commit and rollback differences are as follows:

– CICS supports a two-phase commit. Native environments support only a

single-phase commit.

– Files can be defined to CICS as recoverable files. This is not possible for

native environments.

– Message queues are committed or rolled back at the same time as other

resources in a CICS environment. Native environments support only a

single-phase commit so the message queues might not be committed or rolled

back simultaneously with SQL resources if a problem occurs during commit

or rollback.
v CALL CREATX (EGL sysLib.startTransaction) differences are as follows:

– CALL CREATX starts another transaction in CICS and honors the parameters

prid and recip. EGL sysLib.startTransaction starts another program for a

native environment and ignores the parameters prid and recip. As a minimum,

you must change sysLib.startTransaction to specify a program name if you

generate for a native environment.

– CICS supports both local and remote CALL CREATX. EGL

sysLib.startTransaction only supports starting a local program.
v SQL connection services using EZECONCT (EGL VGLib.connectionService). In

VisualAge Generator, for the CICS environment, EZECONCT ignores the

password. In EGL, for native environments, VGLib.connectionService uses the

password. See “Differences between generated C++ and generated Java” on page

217 for aditional differences due to changing to Java generation.

Chapter 10. Language and runtime differences 215

v EZE special data word differences are as follows:

– EZEAPP (EGL sysVar.transferName). In VisualAge Generator, for the CICS

environment, when EZEAPP is used with an XFER statement, EZEAPP

contains the name of the new transaction to be started. In EGL, for native

environments, when sysVar.transferName is used with a transfer to

transaction or show statement, sysVar.transferName contains the name of the

new program to be started.

– EZEDEST (EGL sysVar.resourceAssociation). In VisualAge Generator, for the

CICS environment, EZEDEST contains the system resource name associated

with a record while the program is running. In EGL, for native environments,

sysVar.resourceAssociation also contains the system resource name associated

with a record. However, the format of the information varies depending on

the runtime environment and the file type. Therefore, because you are

changing both the runtime environment and the file type, you must review

any use of sysVar.resourceAssociation to ensure that the information

provided by your program is correct for your native environment and file

type.

– EZEDESTP (EGL converseVar.printerAssociation). In VisualAge Generator,

for the CICS environment, EZEDESTP contains the destination associated

with the print file. In EGL, for native environments,

converseVar.printerAssociation also contains the file name associated with

the print file. However, the format of the information varies depending on the

runtime environment and the file type. Therefore, because you are changing

both the runtime environment and the file type, you must review any use of

converseVar.printerAssociation to ensure that the information provided by

your program is correct for your native environment and file type.

– EZELTERM (EGL sysVar.terminalID). In VisualAge Generator, for the CICS

environment, EZELTERM contains the CICS terminal identifier and is

equivalent to EZEUSR. In EGL, for native environments, sysVar.terminalID is

initialized from the Java Virtual Machine system property user.name. If this

property cannot be retrieved, sysVar.terminalID contains blanks.

– EZERCODE (EGL sysVar.returnCode). In VisualAge Generator, for the CICS

environment, the value in EZERCODE is not passed back to the system or

calling program. In EGL, for native environments, the value in EZERCODE is

ignored.

– EZERT8 (EGL sysVar.errorCode). In VisualAge Generator, for the CICS

environment, EZERT8 is in one of two forms:

- RSnnnnnn, where nnnnnn is a VAGen return code based on file access and

the problem that occurred.

- nnnnnnnn, where the first two characters are the hexadecimal

representation of the first byte of the EIBFN from the CICS EXEC interface

block. The remaining 6 characters contain the hexadecimal representation of

bytes 0-2 of the EIBRCODE from the CICS EXEC interface block.

In EGL, for native environments, the return code information varies based on

the file type. You should review your use of sysVar.errorCode to ensure that

the values you are checking are correct for your environment and file type.

– EZESEGTR (EGL sysVar.transactionID). In VisualAge Generator, for the CICS

environment, EZESEGTR is initialized to the current transaction ID and also

used to set a new transaction ID to take effect after a CONVERSE. EZESEGTR

can be used to control program logic. In EGL, for native environments,

EZESEGTR is ignored and cannot be used to control program logic.

– EZEUSR (EGL sysVar.sessionID). In VisualAge Generator for the CICS

environment, EZEUSR contains the CICS terminal identifier and is equivalent

216 Rational Software Development Platform: VisualAge Generator to EGL Migration Guide

to EZELTERM. In EGL, for native environments, sysVar.sessionID is

initialized from the Java Virtual Machine system property user.name. If this

property cannot be retrieved, sysVar.sessionID contains blanks.

– EZEUSRID (EGL sysVar.userID). In VisualAge Generator, for the CICS

environment, EZEUSRID contains the CICS user ID if the user is signed on to

the system; otherwise it contains blanks. In EGL, for native environments,

sysVar.userID is initialized from the Java Virtual Machine system property

user.name. If this property cannot be retrieved, sysVar.userID contains blanks.

Differences between generated C++ and generated Java

The following differences occur if you change from generated C++ to generated

Java:

v VAGen-generated C++ programs use environment variables to control the

runtime environment. EGL-generated Java programs use either

programName.properties or rununit.properties, depending on the value of the

genProperties build descriptor option. See “Runtime environment variables” on

page 352 for the correspondence between the VisualAge Generator environment

variables and the EGL runtime properties.

v Generated Java is not interoperable with VAGen generated C++ programs. An

EGL program that is generated for Java cannot transfer to or from a VAGen

program that is generated for C++. An EGL program that is generated for Java

can call a VAGen called batch program that is generated for C++.

v A call from a generated Java program to a native C++ or VAGen generated C++

program is always a remote call even if the programs are running on the same

workstation. Therefore, you must add a linkage table entry for this situation.

v In VAGen generated C++ programs, binary data is stored in Intel format

(reversed byte order). In EGL generated Java programs, binary data is not stored

in Intel format. The EGL conversion tables convert binary data that is passed on

calls between generated Java and generated C++ programs. However, you must

write a program to convert any binary data in files that were written by C++

programs before using the file in a generated Java program.

v For generated Java programs, the name resolution rules for the transfer or show

statements are as follows:

– If the transfer or show statement explicitly specifies both the package name

and program name, this is the program that is used (for example: transfer to

program mypackage.program1).

– If the transfer or show statement explicitly specifies only the program name,

then the first of the following that applies is used to resolve the program

name:

- The file containing the transfer or show statement explicitly imports the

package and program (for example: import mypackage.program1 and

transfer to program program1).

- The transfer to program is in the same package as the transfer or show

statement.

- The file containing the transfer or show statement imports a package that

contains the transfer to program (for example: import mypackage.* and

transfer to program program1).

- The linkage options part used at generation includes a transfer link entry

for the transfer from program that specifies the transfer to program and the

package that contains it. For the show statement, the transfer link entry

must be in the form of a transfer to transaction entry.

Chapter 10. Language and runtime differences 217

– If the transfer or show statement uses sysVar.transferName and the

transfer-to program is in a different package, you must use a linkage options

part to specify the package that contains the transfer-to program.
v General differences are as follows:

– Resource association is done at runtime when using VisualAge Generator

generated C++ code. In EGL, you have the option to specify resource

association information at generation time and have it generated into the

properties file for you. Set the resource associations build descriptor to point

to your resource associations part. Also set the genProperties build descriptor

to GLOBAL or PROGRAM. Refer to the online helps for details of these build

descriptor options.
v Differences for maps are as follows:

– Blink is not supported for text forms.

– The isDecimalDigit property is only supported for character fields. It is

implemented as a software edit, not as a hardware attribute. Numeric fields

also have a software edit. See “Map fields and the numeric hardware

attribute” on page 79 for details.
v For indexed records that have an alternate index record defined, the setting for

the DUP I/O error value differs from VisualAge Generator. For VisualAge

Generator, for a SET record SCAN followed by a SCAN or SCANBACK I/O

option, the DUP I/O error value is not set for the SET record SCAN statement.

The DUP I/O error value is set for each of the duplicate-keyed records other

than the last record retrieved with a duplicate key. For Java generation, a set

record position followed by a get next or get previous statement results in the

duplicate I/O error state being set on the set record position rather than on the

first duplicate-keyed record retrieved. The remaining duplicate-keyed records

result in the duplicate I/O error state being set the same as in VisualAge

Generator. The EGL duplicate state is set on all records other than the first and

last of the duplicate-keyed records. See the online helps for more information

about indexed records and alternate index records and their use with set record

position, get next and get previous.

v Differences for SQL are as follows:

– In VisualAge Generator, generated C++ uses either DB2 or ODBC. EGL debug

and Java generation use JDBC. This results in differences in both debug and

runtime. See “Differences in SQL support” on page 210 for details.
v EZE special data word differences are as follows:

– EZECONVT (EGL sysVar.callConversionTable). In VisualAge Generator for

C++ generation, the conversion table names are in the format ELAxxyyy,

where xx indicates the system and yyy indicates the language. In EGL, for

Java generation, the conversion table names provided by EGL are in the

format CSOBxxxx, where CSO is a fixed prefix, B indicates the byte order of

the target system, and xxxx indicates the code page of the target system. Valid

values for B are X for Unix systems, I for Intel systems, and E for EBCDIC

systems. EGL automatically translates the ELA table names to CSO table

names for you so you do not need to change any code. However, EGL does

not provide the ability for you to create your own CSO conversion table.

– EZERCODE (EGL sysVar.returnCode). In VisualAge Generator, for C++

generation, EZERCODE is passed back to the system or calling program. If

the program ends abnormally, a VAGen return code is passed back rather

than the value in EZERCODE. In EGL, for Java generation, EZERCODE is

ignored.

218 Rational Software Development Platform: VisualAge Generator to EGL Migration Guide

Part 7. Appendixes

© Copyright IBM Corp. 2004, 2006 219

220 Rational Software Development Platform: VisualAge Generator to EGL Migration Guide

Appendix A. Reserved words

EGL reserved words

There are a large number of reserved words in EGL. The reserved words cannot be

used as part names. The migration tool renames functions, data items, records, and

maps if the part name is an EGL reserved word. The migration tool does not

rename tables, map groups, or programs. The EGL reserved words are as follows:

 Table 67. EGL reserved words

Letter Reserved words

A absolute, add, all, and, any, as

B bigInt, bin, bind, blob, boolean, by, byName, byPosition

C call, case, char, clob, close, const, continue, converse, current

D dataItem, dataTable, date, dbChar, decimal, decrement, delete, display, dli, dlicall

E else, embed, end, escape, execute, exit, extends, externallyDefined

F false, field, first, float, for, forEach, form, formGroup, forUpdate, forward, freeSql, from, function

G get, goto, group

H handler, hex, hold

I if, implements, import, in, inOut, inParent, insert, int, interface, interval, into, is, isa

L label, languageBundle, last, library, like

M matches, mbChar, money, move

N new, next, nil, no, noRefresh, not, nullable, num, number, numc

O of, onEvent, onException, open, openUI, or, otherwise, out

P pacf, package, PageHandler, passing, prepare, previous, print, private, program

R record, ref, relative, replace, return, returning, returns

S scroll, self, service, set, show, singleRow, smallFloat, smallInt, sql, sqlCondition, stack, static, string

T this, time, timeStamp, to, transaction, transfer, true, try, type

U unicode, update, url, use, using, usingKeys, usingPCB

W when, where, while, with, wrap

Y yes

Note: EGL part names cannot start with EZE, the # symbol, or the @ symbol.

EGL enumeration words

VAGen has a fixed list of valid values for each property. EGL provides an

enumeration list that contains the valid values for the corresponding property. For

example, EGL stores the valid values for the align property in an EGL enumeration

called AlignKind. In addition, EGL permits the use of variables and expressions for

property values. When EGL resolves a property value, EGL looks first for a

variable by that name. If there is no variable by that name, then EGL looks at the

enumeration that corresponds to the property to validate the property value. For

example, in a form, if a variable field has the property align=center, EGL looks first

for a variable named center within the form. If there is no variable named center

© Copyright IBM Corp. 2004, 2006 221

within the form, EGL then uses AlignKind.center. Table 68 shows the EGL

enumeration names, the list of valid values in the enumeration, and the parts

where the property is used in a way that can cause a collision between variable

names and the values in the enumeration.

In addition, there are several properties that can be set using EGL library constants

and variables. Table 69 lists the EGL properties that use EGL library constants and

variables for reference purposes. However, the migration tool only uses the EGL

library variables and constants that are indicated by an asterisk (*) in the table.

To avoid conflicts when you write new code, you can do one of the following:

v Avoid the use of variable names that match any of the list of valid values when

you are defining variables that might have a collision with that name.

v Always qualify the enumeration value for a property (for example, always

specify align = AlignKind.center).

v Qualify the enumeration value for a property whenever there is a conflict (for

example, specify align = AlignKind.center whenever there is a field named

center within a specific form).

The migration tool uses a combination of the 3 techniques, based on anticipated

frequency of use, the properties that the migration tool actually uses, and

migration performance considerations. To minimize the need to rename your parts

and variables, the migration tool does the following:

v Always renames parts or variables named YES or NO because these are EGL

reserved words.

v Always renames parts or variables named PFn, where n is between 1 and 24. In

effect, the migration tool treats these values as reserved words. This improves

the appearance of the helpKey and validationBypassKeys properties for

programs and forms without a migration performance impact.

v Within a FormGroup, the migration tool does the following:

– Always fully qualifies the deviceType property value. This improves

performance by avoiding the need to review all the field names in all the

forms within the FormGroup.

– Never uses the helpKey or validationBypassKeys properties because there are

no VAGen equivalent properties for a map group.
v Within a form, the migration tool only qualifies properties on the form if one or

more fields within the form is named the same as one of the enumeration

values, EGL constants, or EGL variables that can be used on a form. If there is a

conflict for any field on the form, the migration tool fully qualifies all property

values for all fields within the form with the corresponding enumeration or

library name. However, for the purposes of determining if any field has a

conflict, the migration tool ignores the IndexOrientationKind values (across and

down) because the migration tool never uses this property.

v Within a VGUI record, the migration tool only qualifies properties in the record

if one or more fields within the record is named the same as one of the

enumeration values or EGL variables that can be used in a VGUI record. If there

is a conflict for any field in the record, the migration tool fully qualifies all

property values for all fields within the record with the corresponding

enumeration or library name.

v Within a PSB record, the migration tool always fully qualifies the pcbType

property.

v Within a program, the migration tool always fully qualifies the callInterface

property.

222 Rational Software Development Platform: VisualAge Generator to EGL Migration Guide

v Never qualifies property values within other part types because there is no

possibility of a conflict between a part name and the enumeration values.

Note: Table 68 on page 223 and Table 69 on page 224 are for reference purposes.

Therefore, the tables include Library, ConsoleUI, PageHandler, Service, and

Interface parts, which the migration tool never creates.

 Table 68. EGL enumerations

EGL enumeration

Valid values list which imposes

restrictions on variable names Parts with possible collision

AlignKind center, left, none, right Form

CallingConventionKind I4GL Library

CaseFormatKind defaultCase, lower, upper ConsoleUI

ColorKind black, blue, cyan, defaultColor, green,

magenta, red, yellow, white

Note: black is only valid for

ConsoleUI

Form

 ConsoleUI

CommTypeKind LOCAL, TCPIP Service

Interface

DataSource databaseConnection, reportData,

sqlStatement

Report

DeviceTypeKind doubleByte, singleByte FormGroup

DisplayUseKind button, hyperlink, input, output,

secret, table

Any record used with a PageHandler

DLICallInterfaceKind AIBTDLI, CBLTDLI Program

EventKind afterDelete, afterField, afterInsert,

afterOpenUI, afterRow, beforeDelete,

beforeField, beforeInsert,

beforeOpenUI, beforeRow,

menuAction, onKey

ConsoleUI

ExportFormat html, pdf, text ConsoleUI

HighlightKind blink, defaultHighlight, noHighlight,

reverse, underline

Form

 ConsoleUI

IndexOrientationKind across, down Form

IntensityKind bold, defaultHighlight, dim, invisible,

normalIntensity

Form

 ConsoleUI

LineWrapKind character, compressed, word ConsoleUI

OutlineKind bottom, left, right, top

Note: sysLib.box is a constant that

equates to [left,right,top,bottom].

sysLib.noOutline is a constant that

means there is no outlining.

Form

PCBKind TP, DB, GSAM PSB record

Appendix A. Reserved words 223

Table 68. EGL enumerations (continued)

EGL enumeration

Valid values list which imposes

restrictions on variable names Parts with possible collision

PfKeyKind pfn, where (1 <= n <=24) Form

 FormGroup

 Program

ProtectKind skip, no, yes Form

SelectTypeKind index, value Any record used with a

PageHandler

SignKind leading, none, parens, trailing Form

VGUI record

Any record used with a

 PageHandler

UITypeKind hidden, input, inputOutput, none,

output, programLink, submit,

submitBypass, uiForm

VGUI record

 Table 69. EGL Enumerations that use sysLib constants and sysVar variables

EGL property EGL constants and variables (* = value used by migration tool)

Parts with

possible

collision

dateFormat strLib.defaultDateFormat*

 strLib.eurDateFormat

 strLib.isoDateFormat

 strLib.jisDateFormat

 strLib.usaDateFormat

 VGVar.systemGregorianDateFormat*
 VGVar.systemJulianDateFormat*

 Note: The migration tool only uses defaultDateFormat in DataItem and VGUI

record parts.

ConsoleUI

Form,

VGUI record

fillCharacter strLib.nullFill* Form

outline sysLib.box*

 sysLib.noOutline

Note: outlineKind is an enumeration for other outline values.

Form

timeFormat strLib.defaultTimeFormat

 strLib.eurTimeFormat

 strLib.isoTimeFormat

 strLib.jisTimeFormat

 strLib.usaTimeFormat

Any record

used with a

PageHandler

timeStampFormat strLib.db2TimeStampFormat strLib.odbcTimeStampFormat ConsoleUI

224 Rational Software Development Platform: VisualAge Generator to EGL Migration Guide

SQL reserved words

There are a large number of SQL reserved words that cannot be used in SQL

clauses. The migration tool renames functions, data items, records, and maps if the

part name is an SQL reserved word. The migration tool does not rename tables,

map groups, or programs. The SQL reserved words are as follows:

 Letter Reserved words

A absolute, action, add, alias, all, allocate, alter, and, any, are, as, asc, assertion, at, authorization, avg

B begin, between, bigint, binaryLargeObject, bit, bit_length, blob, boolean, both, by

C call, cascade, cascaded, case, cast, catalog, char, char_length, character, character_length,

characterLargeObject, characterVarying, charLargeObject, charVarying, check, clob, close, coalesce, collate,

collation, column, comment, commit, connect, connection, constraint, constraints, continue, convert, copy,

corresponding, count, create, cross, current, current_date, current_time, current_timestamp, current_user,

cursor

D data, database, date, dateTime, day, deallocate, dec, decimal, declare, default, deferrable, deferred, delete,

desc, describe, diagnostics, disconnect, distinct, domain, double, doublePrecision, drop

E else, end, endExec, escape, except, exception, exec, execute, exists, explain, external, extract

F false, fetch, first, float, for, foreign, found, from, full

G get, getCurrentConnection, global, go, goto, grant, group

H having, hour

I identity, image, immediate, in, index, indicator, initially, inner, input, insensitive, insert, int, integer,

intersect, into, is, isolation

J join

K key

L language, last, leading, left, level, like, local, long, longint, lower, ltrim

M match, max, min, minute, module, month

N national, nationalCharacter, nationalCharacterLargeObject, nationalCharacterVarying,

nationalCharLargeObject, nationalCharVarying, natural, nchar, ncharVarying, nclob, next, no, not, null,

nullIf, number, numeric

O octet_length, of, on, only, open, option, or, order, outer, output, overlaps

P pad, partial, position, prepare, preserve, primary, prior, privileges, procedure, public

R raw, read, real, references, relative, restrict, revoke, right, rollback, rows, rtrim, runtimeStatistics

S schema, scroll, second, section, select, session, session_user, set, signal, size, smallint, some, space, sql,

sqlcode, sqlerror, sqlstate, substr, substring, sum, system_user

T table, tablespace, temporary, terminate, then, time, timestamp, timezone_hour, timezone_minute, tinyint,

to, trailing, transaction, translate, translation, trim, true

U uncatalog, union, unique, unknown, update, upper, usage, user, using

V values, varbinary, varchar, varchar2, varying, view

W when, whenever, where, with, work, write

Y year

Z zone

SQL reserved words requiring special treatment

The following SQL reserved words require special treatment in EGL if they are

used as SQL table names or column names:

call, from, group, having, insert, order, select, set, union,

update, values, where

Appendix A. Reserved words 225

To use these SQL reserved words, do the following:

v To specify the column property for an item in an sqlRecord, specify:

column = "\"reservedWord\""

For example:

column = "\"FROM\""

v To specify the tableNames property for an sqlRecord, specify:

tableNames = [["\"reservedWord2\""]]

For example:

tableNames = [["\"ORDER\""]]

v To use one of the reserved words as an SQL column name in the

defaultSelectCondition for a record, specify:

defaultSelectCondition = #sqlCondition{ "reservedWord" = ... }

For example:

defaultSelectCondition = #sqlCondition{ "ORDER" = ... }

v To use one of the reserved words as an SQL column name in an SQL I/O

statement, specify:

... #sql{ select "reservedWord" from "reservedWord2" } ...

For example:

... #sql{ select "FROM" from "ORDER" } ...

Java reserved words

Java has reserved words that cannot be used for the package names. If you are

generating Java, you may want to avoid using these names:

 Letter Reserved word

A abstract

B boolean, break, byte

C case, catch, char, class, const, continue

D default, do, double

E else, extends

F false, final, finally, float, for

G goto

I if, implements, import, instanceof, int, interface

L long

N native, new, null

P package, private, protected, public

R return

S short, static, super, switch, synchronized

T this, throw, throws, transient, true

V void, volatile

W while

226 Rational Software Development Platform: VisualAge Generator to EGL Migration Guide

Appendix B. Relationship of VisualAge Generator and EGL

Language Elements

The tables in this appendix have 3 columns:

v VisualAge Generator 4.5 -- this column shows the VAGen language element. In

the sections related to part type, the organization of the tables and the

terminology used correspond to the VAGen user interface. The tables for

statements, EZE words, and service routines are organized based on the type of

statement, EZE word, or service routine.

v EGL produced by the migration tool -- this column shows the corresponding

EGL language element. This column only shows the information needed for

migration and is not intended to be the complete EGL syntax. Additional

properties, values, and options might be available for certain EGL language

elements. For example, the EGL set statement provides additional options that

are not available in VisualAge Generator. The only set statement options listed in

these tables are the ones that correspond to VAGen language elements. Use this

column as a guide for finding more detailed information in the EGL

documentation.

v Migration tool considerations -- this column contains additional information

about how the migration tool handles the conversion from VisualAge Generator

to EGL. It also provides references to the sections on ambiguous situations,

where necessary, to provide details about migration with and without the

associated part and the potential problems that can occur when migrating the

VAGen language element.

For each part type, the first row in the first table of the section provides:

v VisualAge Generator 4.5 - an overview of the information you can specify in

various windows for the part type in VisualAge Generator.

v EGL — the overall EGL syntax for the corresponding EGL part type, using the

syntax that the migration tool uses. Other variations of the syntax might be

possible. For example, when migrating a VAGen table, the migration tool always

places the dataTable contents after the dataTable structure so that is the syntax

shown in the Tables section. EGL syntax also permits the dataTable contents to

be placed before the dataTable structure.

The following syntax is used in the tables:

v | - choice of a few options. The order of the choices is the same in both the

VisualAge Generator 4.5 and the EGL columns.

v bullet list - choice of a longer list of options or values. The order of the choices

is the same in both the VisualAge Generator 4.5 and the EGL columns.

v italics - values that the migration tool fills in when migrating from VisualAge

Generator or that you fill in when writing new EGL statements.

v bold - EGL key words and symbols that must be specified as shown.

v { } - encloses information that can be repeated 0 to n times.

v { } - encloses an EGL property list; properties are always separated by commas.

v [] - encloses optional information.

v [] - encloses an EGL list of values; values are always separated by commas

© Copyright IBM Corp. 2004, 2006 227

General syntax conventions

There are some differences in the overall syntax of VisualAge Generator and EGL.

 Table 70. General syntax conventions

VisualAge Generator 4.5 EGL produced by the migration tool Migration tool considerations

Comments are specified in the

following formats:

v Prologs for programs, tables, and

records.

v Descriptions for items and

functions.

v Comments within functions are

indicated by:

– a semicolon (;). Everything on

the same line after the

semicolon is treated as a

comment.

– /*. Everything on the same

line after the /* is treated as a

comment.

Comments are specified in the

following formats:

v // indicates a line comment.

Everything on the same line after

the // is treated as a comment. The

comment is only for one line.

v /* comment */. Everything after the

/* is treated as a comment until the

next */. The comment can span

multiple lines.

The migration tool converts as follows:

v Prologs and part descriptions are

converted to EGL // line comments.

v Descriptions for items used as fields

in records, tables, maps, function

local storage, function parameters,

or function return values are

converted to EGL // line comments.

v Comments within functions are

converted to /* comment */

v Informational comments added by

the migration tool are in the form of

EGL // line comments.

Decimal point can be either a

period or a comma depending on

your locale.

Decimal point during development is

always the period. Generation and

runtime use either a period or a

comma depending on the runtime

locale and the decimalSymbol build

descriptor option.

During migration, if your locale uses

the comma for the decimal point by

default or if you select the Migration

Syntax Preference Convert decimal

comma to decimal point, the migration

tool converts the comma to a period.

Properties are entered in

specialized editors using check

boxes, drop down lists, and so on.

Properties are entered in a text editor

and must be separated by a comma.

No special considerations.

Lists of values are entered in

specialized editors. For example,

the table names for an SQL record

are entered in the SQL Row

Properties window.

Lists of values must be enclosed in

square brackets [].

No special considerations.

Property values that reference

other parts are entered in

specialized editors. For example,

the Edit routine for a map variable

field is entered on the Edits page

of the Variable Field Properties

window.

Property values that refer to other

parts must be enclosed in double

quotes.

No special considerations.

Resolution of names within

statements is context sensitive and

is based on the statement type.

Resolution of names within statements

always follows the same rules

regardless of the statement type.

No special considerations. Any

differences in name resolution result in

EGL validation messages in the

Problems view. If a message occurs,

see “Reference information for

messages - name resolution and

qualification rules” on page 404.

Data item

The data item section is organized into the following tables:

v Data item - general syntax, data type, length, decimals, and description, Table 71

on page 229

228 Rational Software Development Platform: VisualAge Generator to EGL Migration Guide

v Default map properties and User Interface properties - general information,

Table 72 on page 231

v Default map properties and User Interface properties - general edits, Table 73 on

page 231

v Default map properties and User Interface properties - numeric edits, Table 74

on page 233

v Default map properties and User Interface properties - error messages, Table 75

on page 234

v User Interface properties - label and help, Table 76 on page 235

Note: In EGL, there is only one set of edit and message properties for a dataItem

part. The migration tool merges the map and UI properties for the data

item.

 Table 71. Data item — general syntax, data type, length, decimals, and description

VisualAge Generator 4.5 EGL produced by the migration tool Migration tool considerations

VAGen data item part:

v itemName

v Basic information:

– Data type

– Length

– Decimals

– Description

v Default Map Properties

v User Interface (UI) Properties

EGL syntax example:

// Description

DataItem itemName

 dataType(lengthInformation)

 { [{formattingProperties}]

 [{validationProperties}]

 [{pageHandlerFieldProperties}]

 }

end

The migration tool uses the VAGen

data type, length, and decimals to

determine the EGL dataType and

lengthInformation.

The migration tool merges the VAGen

default map properties and the UI

properties into the single set of EGL

formatting, validation, and

pageHandlerField properties.

Character item types:

v Char

v Hex

v DBCS

v Mixed

v Unicode (VisualAge for Java

only)

Length is the number of

characters. In the record editor you

can also show the number of

bytes.

Corresponding character item types:

v char

v hex

v dbchar

v mbchar

v unicode

Length is the number of characters.

The migration tool converts character

data items to the corresponding type

and length.

Numeric character (zoned decimal)

types:

v Num

v Numc

Length is the total number of

digits, with a maximum of 18.

Decimals is the number of digits

to the right of the decimal point.

In the record editor, you can also

show the number of bytes.

Corresponding numeric types:

v num

v numc

Precision is the total number of digits.

Scale is the number of digits to the

right of the decimal point.

The maximum precision for num fields

is 32 for debug and Java generation or

31 for COBOL generation. The

maximum precision for numc fields is

18.

The migration tool converts to the

corresponding type, precision, and

scale. The migration tool omits the

scale if decimals is 0.

Appendix B. Relationship of VisualAge Generator and EGL Language Elements 229

Table 71. Data item — general syntax, data type, length, decimals, and description (continued)

VisualAge Generator 4.5 EGL produced by the migration tool Migration tool considerations

Packed decimal types:

v Pacf

v Pack

Length is the total number of

digits, with a maximum of 18.

Decimals is the number of digits

to the right of the decimal point.

The length for Pacf must be odd

or 18. The length for Pack can be

odd or even. Except for a length of

18, even lengths are recorded

within the data item definition,

but are treated as the next higher

odd length for test, generation,

and in the Data Item and Record

editors. Only the SQL Record

editor shows the even lengths and

only SQL records support even

length for test and generation. The

even length is only used in SQL

where clauses and in SQL functions

that use execution time statement

build. In the record editor you can

also show the number of bytes.

Corresponding numeric types:

v pacf

v decimal

Precision is the total number of digits.

Scale is the number of digits to the

right of the decimal point.

The maximum precision for pacf fields

is 18. The maximum precision for

decimal fields is 32 for debug and Java

generation or 31 for COBOL

generation. The length for pacf must

be odd or 18.

The length for decimal can be odd or

even. Even lengths are supported for

dataItem part definitions and all record

types.

At test and generation, if you use

VisualAge Generator Compatibility

mode, EGL does the following for

decimal items with even precision:

v Increases the precision by one in all

records.

v EGL uses a temporary variable with

the even precision in SQL where

clauses or prepare statements.

The migration tool converts to the

corresponding type, precision, and

scale. The migration tool omits the

scale if decimals is 0. For a Pack item,

if an even length was recorded in the

dataItem part definition, by default the

migration tool migrates it as the even

length.

If you specify the VAGen Migration

Preference Do not honor evensql=y for

items or variables, the migration tool

automatically uses odd precision for a

Pack item (or 18 if the item is the

maximum length) and issues a

warning message for the affected data

item part or nonshared record item.

Binary item types:

v Bin, length 4, no decimals

v Bin, length 9, no decimals

v Bin, length 18, no decimals

v Bin, length 4, 9, or 18 with

decimals

Corresponding binary types:

v smallint (no precision or scale)

v int (no precision or scale)

v bigint (no precision or scale)

v bin with precision and scale

The migration tool converts binary

data items to the corresponding type

based on the length and number of

decimals. The bin type is only used if

decimals (scale) is specified.

Description Not applicable. The migration tool converts the item

description to a comment that

precedes the dataItem definition.

230 Rational Software Development Platform: VisualAge Generator to EGL Migration Guide

Table 72. Default map properties and User Interface properties - general information

VisualAge Generator 4.5 EGL produced by the migration tool Migration tool considerations

Data items can have both default

map properties and user interface

(UI) properties specified. The

properties include the following:

v formatting edits

v validation edits

v error messages

UI properties also include a label

and help text.

Explicitly setting some properties

in VisualAge Generator

automatically causes other

properties to be set. For example,

setting numeric separator also

explicitly sets fill character, input

required, justify, currency symbol,

and sign.

DataItem parts can have the following

properties:

v formatting properties

v validation properties

v PageHandler field properties

The categories for some properties are

changed from VisualAge Generator.

For example, error messages are

grouped with the validation properties.

PageHandler field properties include

the UI label and help text. The EGL

column in the following tables shows

the category for the EGL property.

The migration tool merges the default

map properties and UI properties,

giving precedence to the UI properties.

Validation edits and their associated

error messages are migrated as a pair.

The migration tool only migrates

properties that were explicitly set in

VisualAge Generator. The tool does not

automatically insert default values for

EGL properties. See information about

Merging map and UI edits in “Shared

edits and messages” on page 63 for

details and potential problems.

Also see information about map item

edits for shared data items in “Map

edit routine for shared data items” on

page 64 for details and potential

problems.

 Table 73. Default map properties and User Interface properties - general edits

VisualAge Generator 4.5 EGL produced by the migration tool Migration tool considerations

Edit type (UI only) - values:

v None

v Boolean

v Date

v Time

EGL supports multiple properties:

v not applicable

v isBoolean = yes

v dateFormat = defaultDateFormat

v timeFormat = ″HH:mm:ss″

(formatting properties)

No special considerations.

Edit function (UI only) validatorFunction (validation property) No special considerations.

Edit table (UI only) validatorDataTable (validation

property)

No special considerations.

Run edit function on web (UI

only)

runValidatorFromProgram The EGL property is the reverse of the

VAGen property. The migration tool

converts yes to no and no to yes.

Appendix B. Relationship of VisualAge Generator and EGL Language Elements 231

Table 73. Default map properties and User Interface properties - general edits (continued)

VisualAge Generator 4.5 EGL produced by the migration tool Migration tool considerations

Edit routine (map only) validatorFunction OR

validatorDataTable

(validation property)

If the UI edit function and edit table

are not specified, the migration tool

does the following:

v Sets the validatorFunction property

if the map edit routine is EZEC10 or

EZEC11.

v Sets the validatorFunction property

if the edit routine is a function.

v Sets the validatorDataTable property

if the edit routine is a table.

If the UI edit function or edit table are

specified, the migration tool does not

migrate the map Edit routine.

Special considerations apply if the edit

routine is not available during

migration. See information about map

edit routines in “Map edit routine for

shared data items” on page 64 for

additional details and potential

problems.

Justify - Left | Right | None

(map only)

Note:

v For map items, the default is

right for numeric fields and left

for all other fields.

v For UI items, justify is not

supported.

align = left | right | none

(formatting property)

Note:

v For form fields, the default is right

for numeric fields and left for all

other fields.

v For PageHandler fields and VGUI

record fields, align is not supported.

No special considerations.

Date edit mask (map only)

Valid values are as follows:

v SYSGREGRN

v SYSJULIAN

v dateEditPattern

dateFormat = value

Valid values are as follows:

v systemGregorianDateFormat

v systemJulianDateFormat

v ″dateEditPattern″

(formatting property)

Note: In the dateEditPattern, the

migration tool converts to the

following EGL notation:

v yy or yyyy indicates the year.

v MM indicates the month.

v dd indicates the day of the month.

v DDD indicates the day of the year.

If the UI edit type does not specify

Date, the migration tool sets the

dateFormat based on the Date edit

mask specified in VisualAge Generator,

if any. If the UI edit type specifies

Date, the migration tool does not

migrate the map Date edit mask.

Minimum input minimumInput (validation property) No special considerations.

232 Rational Software Development Platform: VisualAge Generator to EGL Migration Guide

Table 73. Default map properties and User Interface properties - general edits (continued)

VisualAge Generator 4.5 EGL produced by the migration tool Migration tool considerations

Fill character

Note:

v The default fill character for

items used in a UI record is

blank for character, MIXED, and

numeric fields. The default fill

character is zero for hex fields.

Blank is the required fill

character for DBCS and Unicode

fields. Null is not a valid fill

character.

v The default fill character for

items used on a map is null for

character, DBCS, or MIXED

fields. The default fill character

is blank for numeric fields and

zero for hex fields.

fillCharacter (formatting property)

Note:

v The same default fillCharacter is

used for PageHandler fields, form

fields, and VGUI record fields unless

overridden in the specific page,

form, or VGUI record.

v strLib.nullFill is the EGL constant

for the null fill character.

Alternatively, use ″″ (two

consecutive double quotes).

v Non-blank characters are permitted

for Unicode fields in a VGUI record.

The migration tool converts N to the

following:

v N for a UI fill character

v nullFill for a map field character

Special considerations apply because

there is only one default fill character

in EGL. See information about

ambiguous data items and fill

characters in “Fill characters for shared

data items” on page 66 for details and

potential problems.

Fold upperCase (formatting property) No special considerations.

Hex edit (map only) isHexDigit (validation property) No special considerations.

Input required inputRequired (validation property) No special considerations.

Check SO/SI space needsSOSI (validation property) No special considerations.

 Table 74. Default map properties and User Interface properties - numeric edits

VisualAge Generator 4.5 EGL produced by the migration tool Migration tool considerations

Minimum value and Maximum

value

Note: If either Minimum value or

Maximum value is specified, both

must be specified.

validValues = [[minimumValue,

maximumValue]]

 (validation property)

Note: Multiple pairs of values and

single values can be listed in the

validValues property.

The migration tool combines the

minimum and maximum value into the

EGL validValues property.

Sign - None | Leading | Trailing

Note:

v The default sign for numeric

items in a UI record is Leading.

v The default sign for numeric

items on a map is None.

sign = none | leading | trailing

(formatting property)

Note: The default sign for a numeric

field is always leading.

For a numeric field, the migration tool

migrates the first of the following that

applies:

v If the UI sign edit is specified, the

tool migrates to the corresponding

sign property.

v If a UI edit type of date, time, or

Boolean is specified, the tool sets

sign = none.

v If there are any other UI edits

specified, the tool sets sign =

leading.

v If the map sign edit is specified, the

tool migrates to the corresponding

sign property.

v If the map sign edit is not specified,

the tool sets sign = none.

Appendix B. Relationship of VisualAge Generator and EGL Language Elements 233

Table 74. Default map properties and User Interface properties - numeric edits (continued)

VisualAge Generator 4.5 EGL produced by the migration tool Migration tool considerations

Currency (both map and UI)

Currency symbol (UI only)

currency = yes | no |

currencySymbol = "symbol"

(formatting property)

Note:

v The currencySymbol also applies to

forms.

v If currency = yes, but the

currencySymbol is not specified; the

actual currency symbol used at

runtime is set the same way it is in

VisualAge Generator.

The migration tool migrates the first of

the following that applies:

v If the UI Currency symbol is

specified, the tool migrates to

currency = yes, currencySymbol =

″symbol″.

v If the UI Currency edit is set to yes

or no, the tool sets the currency

property to yes or no, respectively.

v If the map Currency edit is set to yes

or no, the tool sets the currency

property to yes or no, respectively.

Separator numericSeparator (formatting

property)

No special considerations.

Zero edit zeroFormat (formatting property) No special considerations.

 Table 75. Default map properties and User Interface properties - error messages

VisualAge Generator 4.5 EGL produced by the migration tool Migration tool considerations

Edit table (UI only) validatorDataTableMsgKey

(validation property)

No special considerations.

EZE function (UI only) validatorFunctionMsgKey (validation

property)

No special considerations.

Edit routine (map only) validatorDataTableMsgKey OR

validatorFunctionMsgKey

(validation properties)

Special considerations apply. See

“Shared edits and messages” on page

63 for details on how the migration

tool determines whether to migrate the

map edit routine message. If the

migration tool migrates the map edit

routine message, the tool does the

following:

v Sets validatorFunctionMsgKey if the

edit routine is EZEC10 or EZEC11.

v Sets validatorDataTableMsgKey if the

edit routine is a table.

v Does not migrate the edit routine

message if the edit routine is a

function because the message is not

used in this situation in VisualAge

Generator.

Special considerations apply. See

information about ambiguous data

items and map edit routines in “Map

edit routine for shared data items” on

page 64 for additional details and

potential problems.

Minimum input minimumInputMsgKey

(validation property)

No special considerations.

234 Rational Software Development Platform: VisualAge Generator to EGL Migration Guide

Table 75. Default map properties and User Interface properties - error messages (continued)

VisualAge Generator 4.5 EGL produced by the migration tool Migration tool considerations

Input required inputRequiredMsgKey

(validation property)

No special considerations.

Data type typeChkMsgKey (validation property) No special considerations.

Numeric range validValuesMsgKey (validation

property)

No special considerations.

 Table 76. User Interface properties - label and help

VisualAge Generator 4.5 EGL produced by the migration tool Migration tool considerations

UI label displayName (PageHandler field

property)

No special considerations.

Help text help (PageHandler field property) No special considerations.

Record

The record section is organized into the following tables:

v Record - general syntax, record type, properties, and prolog, Table 77 on page

235

v Record - record structure for most record types, Table 78 on page 237

v Record - SQL properties and SQL record structure, Table 79 on page 239

v Record - DL/I properties and DL/I record structure, Table 80 on page 243

v Record - UI properties and UI record structure, Table 81 on page 245

v Record - UI item properties - general, Table 82 on page 246

v Record - UI item properties - edits, Table 83 on page 247

v Record - UI item properties - error messages, Table 84 on page 248

v Record - UI item properties - help, Table 85 on page 248

v Record - UI item properties - submit, Table 86 on page 248

v Record - UI item properties - program link, Table 87 on page 249

Note: The migration tool always converts VAGen records to EGL fixed record

parts.

 Table 77. Record - general syntax, record type, properties, and prolog

VisualAge Generator 4.5 EGL produced by the migration tool Migration tool considerations

VAGen record part:

v recordName

v Basic information

– Record type

– Record structure (item list)

v Properties (vary based on record type)

v Prolog

Note: The record structure can be given

by specifying an alternate specification

record or by including the item list.

EGL record example:

//*** Record=recordName***

// prolog

//*******************

Record recordName type recordType

 { [recordProperties] }

 recordStructure

end // end recordName

Note: The record structure can be

given by specifying an embed

statement or by including the item list.

No special considerations.

Appendix B. Relationship of VisualAge Generator and EGL Language Elements 235

Table 77. Record - general syntax, record type, properties, and prolog (continued)

VisualAge Generator 4.5 EGL produced by the migration tool Migration tool considerations

Record types:

v Working Storage

v Redefined

v Serial

v Indexed

v Relative

v Message Queue

v SQL Row

v User Interface

v DL/I Segment

EGL Record types:

v basicRecord

v basicRecord

v serialRecord

v indexedRecord

v relativeRecord

v mqRecord

v sqlRecord

v VGUIRecord

v DLISegment

The migration tool migrates a

redefined record to a

basicRecord. The tool includes

a comment with the record

definition to provide the name

of the record that was

redefined. Special

considerations apply for

redefined records. See the

information in “Redefined

records” on page 66 for details

and potential problems.

Working storage record properties:

v Alternate specification

basicRecord properties:

v embed statement

The migration tool migrates an

alternate specification to the

embed statement.

Redefined record properties:

v Redefinition

Note: The Redefinition property specifies

the name of another record that provides

the physical storage. The current record

provides a different data item layout of

the same physical storage.

basicRecord properties:

v Not applicable. Redefinition

information is only specified in

programs that use the record. The

same record can be used as a

redefinition of another record or as a

normal record.

The migration tool includes a

comment with the record

definition to provide the name

of the record that was

redefined.

The migration tool also

includes the redefines property

on the declaration statement

for the record in programs that

use the record.

Special considerations apply

depending on how the record

is used in the program and on

whether the record is available

during migration. See the

information in “Redefined

records” on page 66 for details

and potential problems.

Serial record properties:

v File name

v Alternate specification

v Variable length item

v Occurrences item

serialRecord properties:

v fileName

v embed statement

v lengthItem

v numElementsItem

The migration tool migrates an

alternate specification to the

embed statement.

Indexed record properties:

v File name

v Record ID

v Alternate specification

v Variable length item

v Occurrences item

indexedRecord properties:

v fileName

v keyItem

v embed statement

v lengthItem

v numElementsItem

The migration tool migrates an

alternate specification to the

embed statement.

Relative record properties:

v File name

v Record ID

v Alternate specification

relativeRecord properties:

v fileName

v keyItem

v embed statement

The migration tool migrates an

alternate specification to the

embed statement.

236 Rational Software Development Platform: VisualAge Generator to EGL Migration Guide

Table 77. Record - general syntax, record type, properties, and prolog (continued)

VisualAge Generator 4.5 EGL produced by the migration tool Migration tool considerations

Message Queue record properties:

v File name

v Alternate specification

v Include message in transaction

v Open queue for exclusive use on input

v Record length item

v Occurrences item

v Queue descriptor record

v Open options record

v Message descriptor record

v Get options record

v Put options record

mqRecord properties:

v queueName

v embed statement

v includeMsgInTransaction

v openQueueExclusive

v lengthItem

v numElementsItem

v queueDescriptorRecord

v openOptionsRecord

v msgDescriptorRecord

v getOptionsRecord

v putOptionsRecord

The migration tool migrates an

alternate specification to the

embed statement.

SQL row record properties:

v See Table 79 on page 239.

SQL row record properties:

v See Table 79 on page 239.

No special considerations.

DL/I segment record properties:

v See Table 80 on page 243.

DL/I segment record properties:

v See Table 80 on page 243.

No special considerations.

UI record properties:

v See Table 81 on page 245.

UI record properties:

v See Table 81 on page 245.

No special considerations.

Prolog Not applicable. The migration tool converts the

prolog to a comment that

precedes the record definition.

 Table 78. Record - record structure for most record types

VisualAge Generator 4.5 EGL produced by the migration tool Migration tool considerations

Record structure - variation 1:

Alternate specification. If RecordA

specifies an alternate specification

of RecordB, RecordB provides all

the items for RecordA. There is no

item structure in RecordA.

If RecordB contains level 77 items,

RecordA only contains the

non-level 77 items from RecordB.

Record structure - variation 1: The EGL

embed statement specifies the record

that provides the field structure for the

current record. RecordA embeds

RecordB. For example:

embed RecordB;

The migration tool migrates an

alternate specification to the embed

statement

Special considerations apply for level

77 items in working storage records.

See information in “Level 77 items in

records” on page 67 for details and

potential problems.

Appendix B. Relationship of VisualAge Generator and EGL Language Elements 237

Table 78. Record - record structure for most record types (continued)

VisualAge Generator 4.5 EGL produced by the migration tool Migration tool considerations

Record structure - variation 2 with

Shared Items:

v itemName

v Occurs

v Shared

v levelNumber is hidden, but it is

based on the data item hierarchy

within the record.

Note: Type, Length, Decimals and

Description are visible in the

record editor, but are not stored in

the record.

Record structure - variation 2 with

EGL type definitions example:

levelNumber itemName

 itemName [occurs];

Note: Type, Length, Decimals and

Description are not visible in the

editor.

If you select the Migration Syntax

Preference Convert shared data items to

primitive item definitions and the data

item part is available, the migration

tool converts the shared item to an

EGL variable that is defined using a

primitive type definition based on the

type, length, and decimals specified

for the data item part. Migration of

type, length, and decimals

information is the same as described

in Table 71 on page 229.

If you do not select the Migration

Syntax Preference Convert shared data

items to primitive item definitions or the

data item part is not available, the

migration tool converts the shared

item to an EGL variable that is

defined using a type definition. For

migration, the type definition is

always the same as the item name.

The migration tool omits the occurs

information if occurs is 1.

Special considerations apply for level

77 items in working storage records.

See information in “Level 77 items in

records” on page 67 for details and

potential problems.

Record structure - variation 2 with

Nonshared Items:

v itemName

v Occurs

v Type

v Length

v Decimals

v Nonshared

v Description

v levelNumber is hidden, but is

based on the data item hierarchy

within the record.

Note: Type, Length, Decimals and

Description are stored with the

item in the record.

Record structure - variation 2 with

EGL primitive types example:

levelNumber itemName

 dataType(lengthInformation)

 [occurs];

 // Description

Note: Type, Length, Decimals and

Description are visible in the editor.

The migration tool converts a

nonshared item to an EGL variable

that is defined using a primitive type.

Migration of type, length, and

decimals information is the same as

described in Table 71 on page 229,

Data items - general syntax, data

type, length, decimals, and

description.

The migration tool omits the occurs

information if occurs is 1.

Special considerations apply for level

77 items in working storage records.

See information in “Level 77 items in

records” on page 67 for details and

potential problems.

238 Rational Software Development Platform: VisualAge Generator to EGL Migration Guide

Table 79. Record - SQL properties and SQL record structure

VisualAge Generator 4.5 EGL produced by the migration tool Migration tool considerations

SQL record properties:

v Default key item

v Alternate specification

v SQL tables:

– Label

– Name

Note:

v If a record does not specify an

alternate specification, the key

items are the items in the record

structure that specify key=yes.

The Default key item is ignored.

v If a record specifies an alternate

specification, the key items are

the Default key item in the

current record merged with the

items in the alternate

specification record that specify

key=yes. The keys are merged in

the order in which the items

appear in the record structure. If

the Default key item in the

current record is also specified

as key=yes in the alternate

specification record, the item is

only included once in the

merged list of keys.

v SQL table names can be an

actual table name (normal

situation) or a table name host

variable that will be substituted

at run time. Table name host

variables start with a semicolon

(:).

sqlRecord properties:

v keyItems

v embed statement

v tableNames and / or

tableNameVariables

Note:

v keyItems is a list of all keys for the

record. key=yes is not specified for

items in the record structure.

v The tableNames property is a list of

the table names and table labels

when the table name is not a host

variable. The tableNameVariables

property is a list of the table names

and table labels when the table

name is a host variable that will be

substituted at run time. The table

names in the tableNameVariables

property do not start with a

semicolon. tableNames and

tableNameVariables can both be

used in the same record definition.

The migration tool builds the

keyItems property as follows:

v If the VAGen alternate specification

is not specified, the tool uses any

items from the record structure that

specify key=yes, but does not

include the VAGen default key

item.

v If the VAGen alternate specification

is specified, the tool merges any

items from the alternate

specification record that specify

key=yes and the default key item

from the current record. The keys

are listed in the same order as the

items appear in the record

structure. If the default key item

from the current record is the same

as one of the key items from the

alternate specification record, the

item is only included once in the

keyItems list.

The migration tool builds the lists for

tableNames and tableNameVariables

as follows:

v tableNames is built from the table

names and table labels when the

table name is not a host variable.

v tableNameVariables is built from

the table names and table labels

when the table name is a host

variable.

Special considerations apply. See

information about SQL alternate

specification in “Alternate

specification records” on page 68 for

details and potential problems.

Appendix B. Relationship of VisualAge Generator and EGL Language Elements 239

Table 79. Record - SQL properties and SQL record structure (continued)

VisualAge Generator 4.5 EGL produced by the migration tool Migration tool considerations

SQL Default Conditions:

v whereClauseText

Note:

v The SQL default conditions

enable you to specify a where

clause, most typically for join

conditions when multiple tables

are used in the SQL row record.

The syntax is SQL syntax.

v !itemColumnName variables are

permitted. These variables

specify the name of an item in

the SQL row record. At test or

generation time, VisualAge

Generator substitutes the

corresponding SQL column

name.

Example of default selection

conditions:

defaultSelectCondition =

 #sqlCondition{

 whereClauseText

 }

Note:

v The defaultSelectCondition is used

for the same purpose as in

VisualAge Generator.

v !itemColumnName variables are not

supported. Actual SQL column

names must be used.

The migration tool converts any

!itemColumnName variables to their

corresponding SQL column name.

Special considerations apply. See

information about SQL alternate

specification in “Alternate

specification records” on page 68 for

details and potential problems.

Record structure - variation 1:

Alternate specification. If RecordA

specifies an alternate specification

of RecordB, RecordB provides all

the items for RecordA. There is no

item structure in RecordA.

Record structure - variation 1: The EGL

embed statement specifies the record

that provides the field structure for the

current record. RecordA embeds

RecordB. For example:

embed RecordB;

The migration tool migrates an

alternate specification to the embed

statement.

240 Rational Software Development Platform: VisualAge Generator to EGL Migration Guide

Table 79. Record - SQL properties and SQL record structure (continued)

VisualAge Generator 4.5 EGL produced by the migration tool Migration tool considerations

Record structure - variation 2 with

Shared Items:

v itemName

v Read Only

v Key

v SQL Column Name

v SQL Code

v Shared

Note:

v Type, Length, Decimals and

Description are visible in the

record editor, but are not stored

in the record.

v Level numbers are never used in

SQL records.

v The SQL Code is not included in

the External Source Format for

pack and binary fields. If the

SQL Code is not included in the

External Source Format for char,

dbchar, or unicode fields, the

field is treated as a fixed length

field. This only occurs for

records that were migrated from

earlier releases of VisualAge

Generator and never modified

using VisualAge Generator 4.5.

Record structure - variation 2 with

EGL type definitions example:

levelNumber itemName itemName

 { [sqlDataCode=sqlCodeNumber]

 [column="SQLColumnName"]

 [isReadOnly=yes]

 [isNullable = yes]

 [sqlVariableLen = yes] };

Note:

v Type, Length, Decimals and

Description are not visible in the

editor.

v Level numbers are optional in SQL

records. If level numbers are

included, the SQL record is a fixed

record. If level numbers are not

included, the SQL record is not a

fixed record. Non-fixed records

permit the use of the new EGL data

types of BLOB, CLOB, and string.

However, other behavior of

non-fixed records is not compatible

with VAGen behavior.

If you select the Migration Syntax

Preference Convert shared data items to

primitive item definitions and the data

item part is available, the migration

tool does the following:

v Converts the shared item to an EGL

variable that is defined using a

primitive definition based on the

type, length, and decimals specified

for the data item part.

v Includes the sqlDataCode property

for hex items.

v Sets the sqlVariableLen=yes

property for char, dbchar, or

unicode fields if the VAGen SQL

data code indicates the item is

variable length. The migration tool

omits the sqlVariableLen property if

the VAGen SQL data code indicates

the item is fixed length.

If you do not select the Migration

Syntax Preference to Convert shared

data items to primitive item definitions or

the data item part is not available, the

migration tool does the following:

v Converts the shared item to an EGL

variable that is defined using a type

definition. For migration, the type

definition is always the same as the

item name.

v Includes the sqlDataCode property

if it is included in the External

Source Format and is not one of the

values for VAGen binary or packed

fields.

v Sets the sqlVariableLen=yes

property if the VAGen SQL data

code indicates the item is variable

length. The migration tool omits the

sqlVariableLen property if the

VAGen SQL data code indicates the

item is fixed length.

The migration tool does the following:

v Includes any key=yes items in the

EGL keyItems property for the

sqlRecord.

v Always adds a level number to

items in the sqlRecord so that the

record is a fixed record. This

preserves VAGen behavior.

Appendix B. Relationship of VisualAge Generator and EGL Language Elements 241

Table 79. Record - SQL properties and SQL record structure (continued)

VisualAge Generator 4.5 EGL produced by the migration tool Migration tool considerations

Record structure - variation 2 with

Nonshared Items:

v itemName

v Type

v Length

v Decimals

v Read Only

v Key

v SQL Column Name

v SQL Code

v Nonshared

v Description

Note:

v Type, Length, Decimals and

Description are stored with the

item in the record.

v Level numbers are never used in

SQL records.

v The SQL Code is not included in

the External Source Format for

pack and binary fields. If the

SQL Code is not included in the

External Source Format for char,

dbchar, or unicode fields, the

field is treated as a fixed length

field. This only occurs for

records that were migrated from

earlier releases of VisualAge

Generator and never modified

using VisualAge Generator 4.5.

Record structure - variation 2 with

EGL primitive types example:

levelNumber itemName

 dataType(lengthInformation)

 // Description

 { [sqlDataCode=sqlCodeNumber]

 [column="SQLColumnName"]

 [isReadOnly=yes]

 [isNullable = yes]

 [sqlVariableLen = yes] };

Note:

v Type, Length, Decimals and

Description are visible in the editor.

v Level numbers are optional in SQL

records. If level numbers are

included, the SQL record is a fixed

record. If level numbers are not

included, the SQL record is not a

fixed record. Non-fixed records

permit the use of the new EGL data

types of BLOB, CLOB, and string.

However, other behavior of

non-fixed records is not compatible

with VAGen behavior.

The migration tool converts the

nonshared item to an EGL variable

that is defined using a primitive type.

Migration of type, length, and

decimals information is the similar to

what is described in Table 71 on page

229.

The migration tool includes the

sqlDataCode property only for hex

items.

The migration tool sets

sqlVariableLen=yes for char, dbchar,

and unicode data items if the VAGen

SQL data code indicates the item is

variable length. The migration tool

omits the sqlVariableLen property if

the VAGen SQL data code indicates

that the item is fixed length.

The migration tool does the following:

v Includes any key=yes items in the

EGL keyItems property for the

sqlRecord.

v Always adds a level number to

items in the sqlRecord so that the

record is a fixed record. This

preserves VAGen behavior.

VAGen data type - Char

v data code - 453

v data code - 449 or 457

EGL data type:

v char; omit sqlVariableLen

v varchar, sqlVariableLen = yes

No special considerations.

VAGen data type - DBCS

v data code - 469

v data code - 465 or 473

EGL data type:

v dbchar; omit sqlVariableLen

v vardbchar, sqlVariableLen = yes

No special considerations.

VAGen data type - Unicode

v data code - 469

v data code - 465 or 473

EGL data type:

v unicode; omit sqlVariableLen

v varunicode, sqlVariableLen = yes

No special considerations.

242 Rational Software Development Platform: VisualAge Generator to EGL Migration Guide

Table 79. Record - SQL properties and SQL record structure (continued)

VisualAge Generator 4.5 EGL produced by the migration tool Migration tool considerations

SQL Column Name

Note: The SQL Column Name is

required.

column = ″SQLColumnName″

Note: The column property is optional.

If the column property is omitted, it

defaults to the field name.

The migration tool migrates based on

the Omit column name preference.

v If you select the preference, the tool

does the following:

– Omits the column property if the

SQL Column Name is the same

as the field name.

– Includes the column property if

the SQL Column Name is

different from the field name.

v If you do not select the preference,

the tool always includes the column

property.

No corresponding property.

Note: VisualAge Generator always

includes the null indicator variable

for SQL items.

isNullable = yes | no

Note: The default for isNullable is no.

The migration tool migrates based on

the Omit isNullable property preference.

v If you select the preference, the tool

does not include the isNullable

property, which will default to no.

v If you do not select the preference,

the tool always includes

isNullable=yes. This preserves

VAGen behavior.

Read Only

Note: Read Only is always

explicitly set. Read Only must

always be yes if there are multiple

tables specified for the SQL record.

isReadOnly = yes | no

Note: ReadOnly defaults to yes if

there are multiple tables specified for

the SQL record. ReadOnly defaults to

no if there is only one table specified

for the SQL record.

The migration tool migrates based on

the Omit isReadOnly property

preference.

v If you select the preference, the tool

only includes the isReadOnly

property if there is a single table

specified for the record and the

VAGen Read Only property is set to

yes.

v If you do not select the preference,

the tool includes the isReadOnly

property whenever the VAGen

Read Only property is set to yes.

 Table 80. Records - DL/I properties and DL/I record structure

VisualAge Generator 4.5 EGL produced by the migration tool Migration tool considerations

DL/I record properties:

v Key item

v Alternate specification

v Record length item

Note: The record name must be

the same as the segment name in

the DL/I PSB.

DLISegment properties:

v keyItem

v embed statement

v lengthItem

Note: EGL permits the record name to

differ from the segment name in the

DL/I PSB. In this situation, the EGL

segmentName property provides the

name used in the DL/I PSB.

If the migration tool renames the

record due to a conflict with an EGL

reserved word or because the record

name starts with the # or @ symbol,

the tool includes the segmentName

property to provide the original

record name.

Appendix B. Relationship of VisualAge Generator and EGL Language Elements 243

Table 80. Records - DL/I properties and DL/I record structure (continued)

VisualAge Generator 4.5 EGL produced by the migration tool Migration tool considerations

Record structure - variation 1:

Alternate specification. If RecordA

specifies an alternate specification

of RecordB, RecordB provides all

the items for RecordA. There is no

item structure in RecordA.

Note: The field names in the

embedded record must be the

same as the DL/I field names in

the PSB.

Record structure - variation 1: The EGL

embed statement specifies the record

that provides the field structure for the

current record. RecordA embeds

RecordB. For example:

embed RecordB;

EGL permits the field names in the

record to differ from the field names in

the DL/I PSB. If the embedded record

is not a DLISegment and the field

names differ, set the dliFieldName

property as follows:

embed RecordB

 { fieldInRecordB

 {dliFieldName="nameInPSB"} } ;

The migration tool migrates an

alternate specification to the embed

statement.

If the alternate specification record is

not a DL/I segment, the tool

overrides the dliFieldName property

for any item that was renamed due to

a conflict with an EGL reserved word

or because the field name starts with

the # or @ symbol.

Special considerations apply. For

details, see “Alternate specification

records” on page 68.

Record structure - variation 2 with

Shared Items:

v itemName

v Occurs

v Shared

v levelNumber is hidden, but is

based on the data item

hierarchy within the record.

Note:

v Type, Length, Decimals and

Description are visible in the

record editor, but are not stored

in the record.

v The field names must be the

same as the DL/I field names in

the PSB.

Record structure - variation 2 with EGL

type definitions example:

 levelNumber itemName

 itemName [occurs]

 {dliFieldName="nameInPSB"};

Note:

v Type, Length, Decimals and

Description are not visible in the

editor.

v EGL permits the field names in the

record to differ from the field names

in the DL/I PSB.

If you select the Migration Syntax

Preference Convert shared data items to

primitive item definitions and the data

item part is available, the migration

tool converts the shared item to an

EGL variable that is defined using a

primitive type definition based on the

type, length, and decimals specified

for the data item part. Migration of

type, length, and decimals

information is the same as described

in Table 71 on page 229.

If you do not select the Migration

Syntax Preference Convert shared data

items to primitive item definitions or the

data item part is not available, the

migration tool converts the shared

item to an EGL variable that is

defined using a type definition. For

migration, the type definition is

always the same as the item name.

The migration tool omits the occurs

information if occurs is 1.

If an item is renamed due to a conflict

with an EGL reserved word or

because the name starts with the # or

@ symbol, the migration tool includes

the dliFieldName property.

244 Rational Software Development Platform: VisualAge Generator to EGL Migration Guide

Table 80. Records - DL/I properties and DL/I record structure (continued)

VisualAge Generator 4.5 EGL produced by the migration tool Migration tool considerations

Record structure - variation 2 with

Nonshared Items:

v itemName

v Occurs

v Type

v Length

v Decimals

v Nonshared

v Description

v levelNumber is hidden, but is

based on the data item

hierarchy within the record.

Note:

v Type, Length, Decimals and

Description are stored in the

record.

v The field names must be the

same as the DL/I field names in

the PSB.

Record structure - variation 2 with EGL

primitive types example:

levelNumber itemName

 dataType(lengthInformation)

 [occurs]

 {dliFieldName="nameInPSB"};

Note:

v Type, Length, Decimals and

Description are visible in the editor.

v EGL permits the field names in the

record to differ from the field names

in the DL/I PSB.

The migration tool converts a

nonshared item to an EGL variable

that is defined using a primitive type.

Migration of type, length, and

decimals information is the same as

described in Table 71 on page 229.

The migration tool omits the occurs

information if occurs is 1.

If an item is renamed due to a conflict

with an EGL reserved word or

because the name starts with the # or

@ symbol, the migration tool includes

the dliFieldName property.

 Table 81. Records - UI record properties and record structure

VisualAge Generator 4.5 EGL produced by the migration tool Migration tool considerations

UI record properties:

v General

– UI title

– Submit value item

– Edit function

– Run edit function on web

v Input Edit Order

v Help text

VGUI record properties:

v General properties

– title

– commandValueItem

– validatorFunction

– runValidatorFromProgram

v validationOrder

v help

Note: The validationOrder property is

specified on each item in the record.

An example of a VGUI record

definition is as follows:

Record recordName type VGUIRecord

 {alias="originalVAGenName",

 commandValueItem=itemX,

 validatorFunction=functionY,

 runValidatorFromProgram=yes,

 title="Page Title",

 help="help text line"

 }

 recordStructure

end // end recordName

The EGL runValidatorFromProgram

property is the reverse of the VAGen

property. The migration tool converts

yes to no and no to yes.

Appendix B. Relationship of VisualAge Generator and EGL Language Elements 245

Table 81. Records - UI record properties and record structure (continued)

VisualAge Generator 4.5 EGL produced by the migration tool Migration tool considerations

Not applicable. alias If the record name conflicts with an

EGL reserved word or starts with the

or @ symbol, the migration tool

does the following:

v Renames the UI record.

v Sets the alias property to the

original VAGen UI record name.

Special considerations apply. See

“Reserved words and UI record

names” on page 70 for additional

details.

The record structure is similar to

that of a working storage record,

except there is additional

information for each data item:

v UI type

v UI properties

The record structure is similar to that of

a basic record except that there are

additional properties for each field:

v uiType

v validation properties, formatting

properties, and PageHandler field

properties

No special considerations.

 Table 82. Record - UI item properties - general

VisualAge Generator 4.5 EGL Migration tool considerations

Not applicable alias If the field name conflicts with an

EGL reserved word or starts with the

or @ symbol, the migration tool does

the following:

v Renames the field.

v Sets the alias property to the

original field name.

Special considerations apply. See

“Reserved words and UI record

names” on page 70 for additional

details.

UI types - values are:

v Form

v Hidden

v Input

v Input/Output

v None

v Output

v Program Link

v Submit

v Submit Bypass

uiType - values are:

v uiForm

v hidden

v input

v inputOutput

v none

v output

v programLink

v submit

v submitBypass

No special considerations.

UI label displayName

(PageHandler field property)

No special considerations.

Array items:

v Occurrences item

v Selected index item

Structured field arrays:

v numElementsItem

v selectedIndexItem

No special considerations.

246 Rational Software Development Platform: VisualAge Generator to EGL Migration Guide

Table 83. Record - UI item properties - edits

VisualAge Generator 4.5 EGL Migration tool considerations

Edit type – values are:

v None

v Boolean

v Date

v Time

EGL supports multiple properties:

v Not applicable

v isBoolean = yes

v dateFormat = defaultDateFormat

v timeFormat = ″HH:mm:ss″

(formatting properties)

No special considerations.

Edit function validatorFunction (validation property) No special considerations.

Run edit function on web runValidatorFromProgram The EGL property is the reverse of the

VAGen property. The migration tool

converts yes to no and no to yes.

Edit table validatorDataTable

(validation property)

No special considerations.

Minimum input minimumInput (validation property) No special considerations.

Fill character

Note:

v The default fill characters are as

follows:

– Blank for character, mixed,

and numeric items.

– 0 for hex items.

v The fill character must be blank

for DBCS and unicode items.

v Null is not a valid fill character.

fillCharacter (formatting property)

Note:

v The default fill characters are as

follows:

– Blank for character, mbchar, and

numeric items.

– 0 for hex items.

v The fill character must be blank for

dbchar. Any character is valid as the

fill character for unicode.

v null is not a valid fill character.

No special considerations.

Fold upperCase (formatting property) No special considerations.

Input required inputRequired (validation property) No special considerations.

Check SO/SI space needsSOSI (validation property) No special considerations.

Currency and Currency symbol currency = yes | no

currencySymbol = "symbol"

No special considerations.

Minimum value and Maximum

value

Note: If either Minimum value or

Maximum value is specified, both

must be specified.

validValues = [[minimumValue,

 maximumValue]]

(validation property)

The migration tool combines the

Minimum value and Maximum value

into the EGL validValues property.

Appendix B. Relationship of VisualAge Generator and EGL Language Elements 247

Table 83. Record - UI item properties - edits (continued)

VisualAge Generator 4.5 EGL Migration tool considerations

Sign - None | Leading | Trailing

Note: The default sign for

numeric items in a UI record is

Leading.

sign = none | leading | trailing

(formatting property)

Note: The default sign for a numeric

field is always leading.

v For a numeric field with a UI type

of hidden, input, output, or

input/output, the migration tool

does the first of the following that

applies:

– If the UI sign edit is specified,

the tool migrates to the

corresponding sign property.

– If a UI edit type of date, time, or

Boolean is specified, the tool sets

sign = none.

– The tool sets a default of sign =

leading.

v For a numeric field with any other

UI type, the migration tool omits

the sign property.

Separator numericSeparator (formatting property) No special considerations.

Zero edit zeroFormat (formatting property) No special considerations.

 Table 84. Record -- UI item properties - error messages

VisualAge Generator 4.5 EGL Migration tool considerations

Edit table validatorTableMsgKey

(validation property)

No special considerations.

EZE function validatorFunctionMsgKey

(validation property)

No special considerations.

Minimum input minimumInputMsgKey

(validation property)

No special considerations.

Input required inputRequiredMsgKey

(validation property)

No special considerations.

Data type typeChkMsgKey

(validation property)

No special considerations.

Numeric range validValuesMsgKey

(validation property)

No special considerations.

 Table 85. UI item properties - help

VisualAge Generator 4.5 EGL Migration tool considerations

Help text help (PageHandler field property) No special considerations.

 Table 86. UI item properties - submit

VisualAge Generator 4.5 EGL Migration tool considerations

Initial value Initializer in the following format for a

field that is not an array:

 ="initialValue"

Initializer in the following format for a

structured field array:

 =["initialValue1","initialValue2"]

No special considerations.

248 Rational Software Development Platform: VisualAge Generator to EGL Migration Guide

Table 87. Record - UI item properties - program link

VisualAge Generator 4.5 EGL Migration tool considerations

Program link information:

v Program

v First UI record

v Open as new window

v Link parameters

Program link information:

v programName

v uiRecordName

v newWindow

v linkParms

EGL combines the VAGen program link

properties into a complex property as

follows:

 @programLinkData {

 programName = "PRGA",

 uiRecordName = "MYUI",

 newWindow = yes

 [, linkParmsInfo]

 }

Note: See below for the details of the

optional linkParmsInfo.

No special considerations.

Link parameters:

v Item in the First UI record

v Value

– Literal

– Item in the current record

Note:

v When using the program link

customizations for a form UI

type, data within the current

form is automatically moved by

name to the First UI record of

the next program. Additional

fields within the First UI record

can be initialized by listing

them in the Link parameters.

v When using the program link

customizations for a program

link UI type, only fields in the

First UI record that are explicitly

listed in the Link parameters are

initialized.

EGL combines the VAGen link

parameters into a complex property:

linkParms = [

@LinkParameter

 { name = "item1InFirstUI",

 value = "literal" },

@LinkParameter

 { name = "item2InFirstUI",

 valueRef = "itemInCurrent"}]

Note: EGL follows the same rules as

VisualAge Generator for program link

customizations for both the uiForm and

the programLink UI types.

No special considerations.

Tables

The VAGen tables section is organized into the following tables:

v VAGen tables - general syntax, table type, properties, and prolog, Table 88 on

page 250

v VAGen tables - table structure, Table 89 on page 251

v VAGen tables — table contents, Table 90 on page 252

Appendix B. Relationship of VisualAge Generator and EGL Language Elements 249

Table 88. Tables — general syntax, table type, properties, and prolog

VisualAge Generator 4.5 EGL produced by the migration tool Migration tool considerations

VAGen table part:

v tableName

v Basic information

– Table type

– Table structure (item list)

v Properties

v Prolog

v Table Contents

EGL syntax example:

//*** DataTable=tableName***

// prolog

//*******************

DataTable tableName

 type tableType

 { [otherTableProperties]

 [alias =

 "originalTableName"] }

 tableStructure

 [{ contents =

 [{rowContents}] }]

end // end tableName

The migration tool does not rename

tables for you even if the name conflicts

with the EGL reserved word list. The

migration tool does not set the alias

property. If you must rename a table,

you can use the alias property to specify

the original name of the VAGen table.

See the information about table names

in “Reserved words and table names”

on page 71 for details.

Table types:

v Unspecified

v Match Invalid

v Match Valid

v Range Match Valid

v Message

DataTable types:

v basicTable

v matchInvalidTable

v matchValidTable

v rangeChkTable

v msgTable

No special considerations.

Properties — Runtime attributes:

v Resident

v Shared

DataTable properties:

v resident

v shared

No special considerations.

Properties - Fold table contents Not applicable. If you want the table

contents to be folded, you must enter

the contents in upper case.

If the VAGen table specifies that the

table contents should be folded, the

migration tool ensures that the char,

hex, and mixed data in the table

contents is converted to upper case.

Prolog Not applicable. The migration tool converts the prolog

to a comment that precedes the

DataTable definition.

250 Rational Software Development Platform: VisualAge Generator to EGL Migration Guide

Table 89. Tables — Table structure

VisualAge Generator 4.5 EGL produced by the migration tool Migration tool considerations

VAGen Table structure - with

Shared Items:

v itemName

v Shared

v levelNumber is hidden, but it is

based on the data item

hierarchy within the record.

Note: Type, Length, Decimals and

Description are visible in the table

editor, but are not stored in the

table.

DataTable structure - with EGL type

definitions:

levelNumber itemName

 itemName ;

Note: Type, Length, Decimals and

Description are not visible in the

editor.

If you select the Migration Syntax

Preference Convert shared data items to

primitive item definitions and the data

item part is available, the migration tool

converts the shared item to an EGL

variable that is defined using a primitive

definition based on the type, length, and

decimals specified for the data item

part. Migration of type, length, and

decimals information is the same as

described in Table 71 on page 229.

If you do not select the Migration

Syntax Preference Convert shared data

items to primitive item definitions or the

data item part is not available, the

migration tool converts the shared item

to an EGL variable that is defined using

a type definition. For migration, the type

definition is always the same as the item

name.

VAGen Table structure — with

Nonshared Items:

v itemName

v Type

v Length

v Decimals

v Nonshared

v Description

v levelNumber is hidden, but it is

based on the data item

hierarchy within the table.

Note: Type, length, decimals, and

description are stored with the

item in the table.

DataTable structure — with EGL

primitive types:

levelNumber itemName

 dataType(lengthInformation) ;

 // Description

Note: Type, length, decimals and

description are visible in the editor.

The migration tool converts a nonshared

item to an EGL variable that is defined

using a primitive type. Migration of

type, length, and decimals information

is the same as described in Table 71 on

page 229.

Appendix B. Relationship of VisualAge Generator and EGL Language Elements 251

Table 90. Tables — table contents

VisualAge Generator 4.5 EGL produced by the migration tool Migration tool considerations

Table contents:

v Table contents are entered in a

formatted editor. Table contents

are entered for the top level

(parent) items in the table

structure.

v Character and hex data is not

enclosed in quotes.

DataTable contents:

v Each row’s contents is enclosed in

square brackets. There is an outer

set of square brackets that encloses

the entire set of rows.

v Values within the row contents

must be separated by commas.

v Character data including hex data

must be enclosed in double-quotes.

Example:

contents = [[rowContents]

 { , [rowContents] }

]

where

 rowContents = value { , value}

If the VAGen table specifies that the

table contents should be folded, the

migration tool ensures that the char,

hex, and mixed data in the table

contents is converted to upper case.

The migration tool also encloses

character data, including hex data, in

double-quotes.

Map groups

The map groups section is organized into the following tables.

v Map Groups — general information, Table 91 on page 252

v Map Groups — general syntax and floating areas, Table 92 on page 253

v Map Groups — device names, types, and sizes, Table 93 on page 254

 Table 91. Map Groups — general information

VisualAge Generator 4.5 EGL produced by the migration tool Migration tool considerations

The map group part is only

required if there are floating areas.

If there is no map group part,

VisualAge Generator automatically

generates all maps with the same

map group name as though the

map group part did exist.

The formGroup is required. The migration tool creates a

formGroup part if one does not exist

in the migration set.

Map names consist of a map group

name and a map name.

The form name does not include the

formGroup name.

A form can be defined (nested) within

a formGroup.

Alternatively, a form can be outside the

formGroup. In this case, the formGroup

must include a use statement to specify

the form name and an import

statement to import the package in

which the form is located. This

technique enables you to have one

definition of a common form (for

example, a pop-up list form) and make

it available in many different

formGroups.

The migration tool migrates all maps

to forms. The tool does not attempt

to identify common, identical map

definitions across multiple map

groups.

If you migrate in single file mode,

the migration tool includes a use

statement for each form within a

formGroup. You should move the

forms so that they are nested within

their formGroup.

If you migrate using Stage 1 – 3

migration, the migration tool

automatically nests all forms within

the formGroup.

252 Rational Software Development Platform: VisualAge Generator to EGL Migration Guide

Table 91. Map Groups — general information (continued)

VisualAge Generator 4.5 EGL produced by the migration tool Migration tool considerations

When a program specifies a map

group, the program can use any

map within the map group just by

referencing the map name.

When a program includes a use

statement to indicate which formGroup

it is using, the program can reference

any map within the formGroup just by

referencing the form name.

No special considerations.

 Table 92. Map Groups — general syntax and floating areas

VisualAge Generator 4.5 EGL produced by the migration tool Migration tool considerations

The map group part can contain

the following:

v Map group name

v Floating area information

– Device name

– Device size

– Size

- Lines

- Columns

– Position

- Starting line

- Starting column

The formGroup can contain the following:

v formGroup name

v formGroup properties

v Screen floating area information

v Print floating area information

v Use statements for the forms that are

included in the formGroup.

An example of the format of a formGroup

is as follows:

FormGroup groupName {

 [alias="generationName"]

 [screenFloatingArea

 {screenFloatingAreaInformation}]

 [printFloatingArea

 {printFloatingAreaInformation}] }

 Form formName type textForm

 {formProperties}

 [variableFields]

 [constantFields]

 end // end formName

 use formName2;

end // end groupName

The migration tool uses the

VAGen device type to determine

whether the floating area

information is for a Display map

(screenFloatingArea) or a Printer

map (printFloatingArea).

See Table 93 on page 254 about

setting deviceType.

Not applicable. alias The migration tool does not

rename map groups even if they

conflict with an EGL reserved

word. Special considerations apply.

See “Reserved words and

formGroup names” on page 72 for

details and potential problems.

Appendix B. Relationship of VisualAge Generator and EGL Language Elements 253

Table 92. Map Groups — general syntax and floating areas (continued)

VisualAge Generator 4.5 EGL produced by the migration tool Migration tool considerations

Floating area information includes

the following:

v Device name

v Device size (rows x columns)

v Floating area specification

– Size

- Lines

- Columns

– Position

- Starting line

- Starting column

Note:

v In VisualAge Generator, you

define the size and starting

position of the floating area.

v Different floating area

specifications are permitted, but

not recommended, for devices

that have the same size.

Floating area information includes the

following:

v Device size

v Margin information

Print floating area information also

includes the device type.

Here is an example of the screen floating

area that is used for text forms:

screenFloatingArea {

 screenSize=[lines,columns],

 topMargin=nn,

 bottomMargin=nn,

 leftMargin=nn,

 rightMargin=nn

 }

Here is an example of the print floating

area that is used for print forms:

printFloatingArea {

 deviceType=singleByte,

 pageSize=[lines,columns],

 topMargin=nn,

 bottomMargin=nn,

 leftMargin=nn,

 rightMargin=nn

 }

Note: Only one floating area specification

is permitted for a screenSize or pageSize.

The migration tool uses the

VAGen device type to determine

whether the floating area

specification is for display maps

(screenFloatingArea) or print maps

(printFloatingArea).

The migration tool computes the

margin information as follows:

v The topMargin is set to the

VAGen floatingAreaStartingLine

- 1.

v The bottomMargin is set to the

VAGen deviceRows -

(floatingAreaStartingLine +

floatingAreaLines) + 1.

v The leftMargin is set to the

VAGen

floatingAreaStartingColumn - 1.

v The rightMargin is set to the

VAGen deviceColumns -

(floatingAreaStartingColumn +

floatingAreaColumns) + 1.

See Table 93 on page 254 for

information about setting the

deviceType.

Printer type can be one of the

following:

v Printer

v DBCS printer

deviceType=singleByte | doubleByte

Note: The deviceType property is only

specifed for print forms.

The migration tool sets the EGL

deviceType property based on the

VAGen printer type.

The migration tool always

qualifies the deviceType value

with DeviceTypeKind (for

example, deviceType =

DeviceTypeKind.doubleByte). This

avoids any name conflicts with

variable fields on forms within the

formGroup.

 Table 93. Map Groups — device names, types, and sizes

VisualAge Generator

Device Name

Device Size

(lines x

columns)

Device Type Migration tool considerations

3643–2 6 x 40 Display This device size is not supported for COBOL

generation.

3277–1 12 x 40 Display This device size is not supported for COBOL

generation.

3643–4 16 x 64 Display This device size is not supported for COBOL

generation.

254 Rational Software Development Platform: VisualAge Generator to EGL Migration Guide

Table 93. Map Groups — device names, types, and sizes (continued)

VisualAge Generator

Device Name

Device Size

(lines x

columns)

Device Type Migration tool considerations

3278–1, 3278–1B,

ANY–1D

12 x 80 Display No special considerations.

3278–2, 3278–2B,

ANY–2D

24 x 80 Display No special considerations.

3278–3, 3278–3B,

ANY-3D

32 x 80 Display No special considerations.

3278–4, 3278–4B,

ANY-4D

43 x 80 Display No special considerations.

3278–5, 3278–5B,

ANY-5D

27 x 132 Display No special considerations.

ANY-D (3290 configured

as 62x160)

255 x 160 Display This device size is not supported for COBOL

generation.

5550D 24 x 80 DBCS Display No special considerations.

3767, PRINT-B,

PRINTER

255 x 132 Printer For the printFloatingArea, the EGL

deviceType=singleByte

5550P 255 x 158 DBCS Printer For the printFloatingArea, the EGL

deviceType=doubleByte

Maps

The maps section is organized into the following tables.

v Maps — general information, Table 94 on page 255

v Display maps — general syntax, map type, and properties, Table 95 on page 256

v Printer maps — general syntax, map type, and properties, Table 96 on page 258

v Map constant and variable fields — general information, Table 97 on page 259

v Map constant and variable fields — general syntax, data type, length, decimals,

and description, Table 98 on page 261

v Map constant and variable fields — attributes, Table 99 on page 264

v Map variable fields — general edits, Table 100 on page 265

v Map variable fields — numeric edits, Table 101 on page 267

v Map variable fields — error messages, Table 102 on page 268

 Table 94. Maps — general information

VisualAge Generator 4.5 EGL produced by the migration tool Migration tool considerations

There are two types of maps:

v Display maps

v Printer maps

There are two types of forms:

v Text forms

v Print forms

No special considerations.

Appendix B. Relationship of VisualAge Generator and EGL Language Elements 255

Table 94. Maps — general information (continued)

VisualAge Generator 4.5 EGL produced by the migration tool Migration tool considerations

Map names consist of a map

group name and a map name.

The form name does not include the

formGroup name.

A form can be defined (nested) within a

formGroup.

Alternatively, a form can be outside the

formGroup. In this case, the formGroup

must include a use statement to specify

the form name and an import statement

to import the package in which the form

is located. This technique enables you to

have one definition of a common form

(for example, a pop-up list form) and

make it available in many different

formGroups.

The migration tool migrates all maps

to forms. The tool does not attempt to

identify common, identical map

definitions across multiple map groups.

If you migrate in single file mode, the

migration tool includes a use statement

for each form within a formGroup. You

should move the forms so that they are

nested within their formGroup.

If you migrate using Stage 1 – 3

migration, the migration tool

automatically nests all forms within the

formGroup.

When a program specifies a map

group, the program can use any

map within the map group just

by referencing the map name.

When a program includes a use

statement to indicate which formGroup

it is using, the program can reference

any map within the formGroup just by

referencing the form name.

No special considerations.

 Table 95. Display maps — general syntax, map type, and properties

VisualAge Generator 4.5 EGL produced by the migration tool Migration tool considerations

Display maps can contain the

following:

v Map group name and map

name

v Map properties

– General properties

- Help map name

- Help key

- Bypass keys

- Variable field folding

– Layout properties

- Map size

- Starting position

- Floating map

– Devices

- Type (Display or Print)

- Supported devices

v Constant fields

v Variable fields

v Field edit order for variable

fields

Text form parts can contain the

following:

v Form name

v Form type

v Form properties

v Constant fields

v Variable fields

v Validation order for variable fields

An example of the format of a text form

created by the migration tool is as

follows:

Form mapName type textForm

 { screenSizes=[sizeList],

 formSize=[24,80], position=[1,1],

 helpForm="helpFormName",

 helpKey=pf1,

 validationBypassKeys=[pf3],

 msgField="VAGen_EZEMSG"}

 [variableFields]

 [constantFields]

end // end mapName

The migration tool uses the VAGen

device type to determine whether the

map is a Display map (text form) or a

Printer map (print form).

See Table 93 on page 254 for

information about determining whether

the device is a display or printer.

Help map name helpForm No special considerations.

Help key helpKey No special considerations.

256 Rational Software Development Platform: VisualAge Generator to EGL Migration Guide

Table 95. Display maps — general syntax, map type, and properties (continued)

VisualAge Generator 4.5 EGL produced by the migration tool Migration tool considerations

Bypass keys

You can specify a maximum of 5

Bypass keys for a map.

validationBypassKeys

You can specify a maximum of 5

validationBypassKeys for a form.

No special considerations.

Variable field folding Not supported for a form. Each char or

mbchar variable field on the form must

specify whether the data the user enters

is to be automatically converted to

upper case.

The migration tool does the following:

v If Variable field folding is specified

for the entire map, the migration tool

includes upperCase=yes for every

character and mixed field.

v If Variable field folding is not

specified for the entire map, the

migration tool uses the Fold

information specified for each

character or mixed field to determine

whether to set the upperCase

property for that field.

Map size — Lines and Columns formSize = [Lines, Columns] No special considerations.

Starting position - Line and

Column

NEXT,SAME is required if the

map is a floating map.

position = [Line, Column]

If the position information is omitted,

the form is a floating form

If Floating map is selected, the

migration tool omits the position

information.

Floating map Not applicable. If the position

information is omitted, the form is a

floating form.

If Floating map is selected, the

migration tool omits the position

information.

Device Type - Display or DBCS

Display

type textForm The migration tool uses the Device

Type information to determine whether

to migrate the map to a text or print

form.

Supported devices

Note: Supported devices shows

the device type, number of lines,

and number of columns

screenSizes = [[Lines, Columns],

 [Lines, Columns]]

Note: Include a [Lines, Columns] pair

for each screen size that you want to

have supported for the form.

The migration tool uses the device type

information to determine the

corresponding screenSizes property. If

several VAGen devices have the same

screen Size, the migration tool only

includes the screen size once.

Special considerations apply because

not all of the devices supported by

VAGen are supported for COBOL

generation in EGL. See “Map groups,

maps, and device sizes” on page 74 for

details.

Not applicable. In VisualAge

Generator, the message field is

always named EZEMSG.

msgField

This is the name of the field that is to

contain any EGL error messages.

The migration tool sets the msgField

property if EZEMSG is anywhere on

the map.

Appendix B. Relationship of VisualAge Generator and EGL Language Elements 257

Table 95. Display maps — general syntax, map type, and properties (continued)

VisualAge Generator 4.5 EGL produced by the migration tool Migration tool considerations

Not applicable. alias The migration tool includes the alias

property if the map has to be renamed

due to a conflict with an EGL reserved

word or because the map name starts

with the # or @ symbol. The migration

tool also includes the alias property for

a map in a program’s help map group

if the map has to be renamed due to a

conflict with the name of a map in the

program’s main map group.

Special considerations apply. See “Map

names and help map names” on page

75 for details.

 Table 96. Printer maps — general syntax, map type, and properties

VisualAge Generator 4.5 EGL produced by the migration tool Migration tool considerations

Printer maps can contain the

following:

v Map group name and map

name

v Map properties

– General properties

- Help map name

- Help key

- Bypass keys

- Variable field folding

- SO/SI take position

– Layout properties

- Map size

- Starting position

- Floating map

– Devices

- Type (Display or print)

- Supported devices

v Constant fields

v Variable fields

v Field edit order for variable

fields

Print forms can contain the following:

v Form name

v Form properties

v Constant fields

v Variable fields

An example of the format of a text form

created by the migration tool is as

follows:

Form mapName type printForm

 {formSize=[255,158], position=[1,1],

 addSpaceForSOSI=yes }

 [variableFields]

 [constantFields]

end // end mapName

The migration tool uses the VAGen

device type to determine whether the

map is a Display map (text form) or a

Printer map (print form).

The migration tool always omits the

following properties for print forms:

v General properties

– Help map name

– Help key

– Bypass keys

– Variable field folding

v Devices

– Supported devices

v Field edit order for variable fields

See Table 93 on page 254 for

information about determining whether

the device is a display or printer.

Help map name Not applicable for a print form. The migration tool omits this property

for a print form.

Help key Not applicable for a print form. The migration tool omits this property

for a print form.

Bypass keys Not applicable for a print form. The migration tool omits this property

for a print form.

Variable field folding Not applicable for a print form. The migration tool omits this property

for a print form.

SO/SI take position addSpaceForSOSI No special considerations.

Map size — Lines and Columns formSize = [Lines, Columns] No special considerations.

258 Rational Software Development Platform: VisualAge Generator to EGL Migration Guide

Table 96. Printer maps — general syntax, map type, and properties (continued)

VisualAge Generator 4.5 EGL produced by the migration tool Migration tool considerations

Starting position - Line and

Column

NEXT,SAME is required if the

map is a floating map.

position = [Line, Column]

If the position information is omitted,

the form is a floating form.

If Floating map is selected, the

migration tool omits the position

information.

Floating map Not applicable. If the position

information is omitted, the form is a

floating form.

If Floating map is selected, the

migration tool omits the position

information.

Device Type - Printer or DBCS

Printer

type printForm The migration tool uses the Device

Type information to determine whether

to migrate the map to a text or print

form.

Supported devices Not applicable for a print form. The migration tool omits this property

for a print form.

Not applicable. In VisualAge

Generator, the message field is

always named EZEMSG.

msgField

This is the name of the field that is to

contain any EGL error messages.

The migration tool sets the msgField

property if EZEMSG is anywhere on

the map.

Not applicable. alias The migration tool includes the alias

property if the map has to be renamed

due to a conflict with an EGL reserved

word or because the map name starts

with the # or @ symbol. The migration

tool also includes the alias property for

a map in a program’s help map group

if the map has to be renamed due to a

conflict with the name of a map in the

program’s main map group.

Special considerations apply. See “Map

names and help map names” on page

75 for details.

 Table 97. Map constant and variable fields — general information

VisualAge Generator 4.5 EGL produced by the migration tool Migration tool considerations

All positions on a map must be

accounted for as one of the

following:

v a variable field

v a constant field

v an attribute byte at the

beginning of a constant or

variable field

All positions on a form do not have to

be accounted for. Blank constants that

have the default properties

(noHighLight, normalIntensity,

protect=skip, defaultColor, no outlining,

and no cursor) do not need to be

specified.

The migration tool omits blank

constants that have the default

properties.

Constant fields on display maps

can have attributes specified that

do not really apply to constants.

For example:

v Unprotected

v Input required

v Require fill on input

v Numeric attribute

v Modified data tag

Constant fields on text forms cannot

specify properties that do not make

sense for a constant.

The migration tool omits properties for

constants on text form if the properties

are not supported.

Appendix B. Relationship of VisualAge Generator and EGL Language Elements 259

Table 97. Map constant and variable fields — general information (continued)

VisualAge Generator 4.5 EGL produced by the migration tool Migration tool considerations

Constant field on printer maps

can have attributes that do not

really apply to printers. For

example:

v Color

v Intensity

v Highlighting other than

underscore

v Protection

v Initial cursor field

v Light pen detect

Constant fields on print forms cannot

specify properties that do not make

sense for a constant.

The migration tool omits properties for

constants on print forms if the

properties are not supported.

Variable fields on printer maps

can specify attributes that do not

really apply to printers. For

example:

v Color

v Intensity

v Highlighting other than

underscore

v Protection

v Initial cursor field

v Input required

v Require fill on input

v Numeric attribute

v Modified data tag

v Light pen detect

Variable fields on print forms cannot

specify properties that to not make sense

for a print form.

The migration tool omits properties for

variable fields on print forms if the

properties are not supported.

Variable fields on printer maps

can specify edits that do not

really apply to printers. For

example:

v Edit routine

v Minimum input

v Fold

v Hex edit

v Input required

v Minimum value

v Maximum value

v Edit messages

Variable fields on print forms cannot

specify properties that to not make sense

for a print form.

The migration tool omits properties for

variable fields on print forms if the

properties are not supported.

260 Rational Software Development Platform: VisualAge Generator to EGL Migration Guide

Table 98. Map constant and variable fields — general syntax, data type, length, decimals, and description

VisualAge Generator 4.5 EGL produced by the migration tool Migration tool considerations

A variable on a map has the

following information:

v Name

v Information based on what

you dropped on the map:

– Data type

– Position

v Basic information:

– Descripton

– Initial value

– Length in bytes

– Array index

– Numeric edit

v Attributes

v Edits, including number of

decimals

v Error messages

Note: position is the position of

the attribute byte. The length in

bytes is the length of the field in

bytes, excluding the attribute

byte. The length in bytes is also

used for the length of the data

value.

The information for a variable field on a

map includes the following:

v Name

v Type and length in characters for

character fields

v Type, precision, and scale for numeric

fields

v Position

v Field length in bytes

v Presentation properties

v Formatting properties

v Validation properties

v Value

In general, the following is true:

v VAGen attributes correspond to EGL

presentation properties.

v VAGen edits and messages

correspond to EGL formatting

properties or validation properties.

v However, some of the VAGen

attributes and edits are merged into a

single EGL property or moved to a

different category.

Here is an example of an EGL variable

field:

itemName

 dataType(lengthInformation)

 // description

 { position=[row,column],

 fieldLen=length,

 validationOrder=n,

 [presentationProperties]

 [formattingProperties]

 [value="initialValue"]

 [arrayInformation]

 }

Note: position is the position of the

attribute byte. fieldLen is the length of

the field in bytes, excluding the attribute

byte. The primitive information given in

dataType(lengthInformation) is the length

of the data value.

The migration tool sets the EGL

fieldLen property to the VAGen Length

in bytes. The tool sets the

lengthInformation for the dataType as

follows:

v For char, dbchar, and mbchar fields,

migration tool sets the

lengthInformation to the number of

characters, not the number of bytes.

v For VAGen char fields that specify

the Numeric edit, the migration tool

does the following:

– Converts the field to the EGL

num type.

– Sets the precision to the VAGen

length in bytes and then reduces

the precision by one if decimals

are specified for the field in

VisualAge Generator.

– Sets the scale to the number of

decimals specified in VisualAge

Generator.

Special considerations apply. See

“Numeric variable fields” on page 77

for details.

Appendix B. Relationship of VisualAge Generator and EGL Language Elements 261

Table 98. Map constant and variable fields — general syntax, data type, length, decimals, and

description (continued)

VisualAge Generator 4.5 EGL produced by the migration tool Migration tool considerations

A constant on a map has the

following information:

v Information based on what

you dropped on the map:

– Data type

– Position

v Basic information:

– Initial value

– Length in bytes

v Attributes

Note: position is the position of

the attribute byte. The length in

bytes is the length of the field in

bytes, excluding the attribute

byte.

The information for a constant field on a

map includes the following:

v Position

v Field length

v Presentation properties

v Value

In general, the following is true:

v VAGen attributes correspond to EGL

presentation properties.

v Attributes that apply only to input

editing are not supported for EGL

constant fields.

The data type for a constant is

determined based on the value property.

Here is an example of an EGL constant

field:

{ position=[row,column],

 fieldLen=length,

 [presentationProperties]

 [value="initialValue"] }

Note: position is the position of the

attribute byte. fieldLen is the length of

the field in bytes, excluding the attribute

byte.

The migration tool sets the EGL

fieldLen property to the VisualAge

Generator Length.

Data type:

v Character constant

v Character variable

v DBCS constant

v DBCS variable

v Mixed constant

v Mixed variable

v Character variable with the

Numeric edit selected

Note: The type is determined

based on the type of field you

drop on the map and whether

you select the Numeric edit box.

EGL data type:

v Not applicable

v char

v Not applicable

v dbchar

v Not applicable

v mbchar

v num

No special considerations.

Description Not applicable. The migration tool converts the

description to a comment that follows

the data type and length information.

262 Rational Software Development Platform: VisualAge Generator to EGL Migration Guide

Table 98. Map constant and variable fields — general syntax, data type, length, decimals, and

description (continued)

VisualAge Generator 4.5 EGL produced by the migration tool Migration tool considerations

Initial value value

Note:

v In VisualAge Generator Compatibility

mode, the value property is only used

when displaying a field on the screen

that has not had a value assigned to

it. The value property is not used to

set the initial value of the field in

storage.

v When VisualAge Generator

Compatibility mode is not specified,

the value property provides the initial

value of field in the program when

the program starts.

No special considerations.

Length An EGL variable has the following:

v A length, which is the number of

characters or digits in the field.

v A fieldLen, which is the space the

field occupies on the map, excluding

the attribute byte.

The migration tool uses the VAGen

length to set both the EGL length and

the EGL fieldLen properties. Special

considerations apply for numeric fields.

See “Numeric variable fields” on page

77 for details.

Array index

Note:

v The array size is determined

based on the highest array

index for the variable field.

v You can override some

attributes such as cursor

position, color, highlighting,

intensity, protection, and

cursor position for elements of

the array.

v You can also override the

initial value for elements of

the array.

itemName

datatype(lengthInfo)

[arraySize]

{ properties for index 1 ,

indexOrientation = across | down,

columns = n1,

linesBetweenRows = n2,

spacesBetweenColumns = n3,

this[n]

{ properties for index n }

}

itemName

 datatype(lengthInfo)

 [arraySize]

 { properties for index 1,

 this[n]

 { properties for index n }

 }

Note:

v The array size is specified

immediately after the datatype and

length information.

v You can override cursor location, and

presentation properties such as color,

highlighting, intensity, and protect.

v You can also override the value

property.

For standard arrays, the migration tool

uses the indexOrientation, columns,

linesBetweenRows, and

spacesBetweenColumns properties to

provide position information. The tool

only includes this[n] if the cursor

location or presentation properties of

an array element differ from the first

element of the array.

For nonstandard arrays, the migration

tool includes this[n] for each element

of the array after the first to provide

the position=[row,column] property.

The tool also includes the cursor

location or presentation properties for

an array element if they differ from the

first element of the array.

Appendix B. Relationship of VisualAge Generator and EGL Language Elements 263

Table 98. Map constant and variable fields — general syntax, data type, length, decimals, and

description (continued)

VisualAge Generator 4.5 EGL produced by the migration tool Migration tool considerations

Field Edit Order

Note:

v Field Edit Order is specified

from the Define pulldown.

v The default Field Edit Order

is based on the position of the

variable fields on the map, left

to right, then top to bottom.

v Some versions of Cross

System Product and

VisualAge Generator did not

record the field edit order in

the External Source Format.

validationOrder

Note: The default validationOrder is

based on the position of the variable

fields on the map, left to right, then top

to bottom.

The migration tool omits the

validationOrder if it is not included in

the External Source Format for the

map.

 Table 99. Map constant and variable fields — attributes

VisualAge Generator 4.5 EGL produced by the migration tool Migration tool considerations

Intensity:

v Normal

v Dark

v Bright

intensity:

v normalIntensity

v invisible

v bold

(presentation property)

No special considerations.

Highlight:

v No highlight

v Blink

v Reverse video

v Underscore

highlight:

v noHighlight

v blink

v reverse

v underline

(presentation property)

No special considerations.

Protection:

v Unprotected

v Protected

v Autoskip

protect:

v no

v yes

v skip

(presentation property)

No special considerations.

Color:

v Mono

v Blue

v Red

v Pink

v Green

v Turquoise

v Yellow

v White

color:

v defaultColor

v blue

v red

v magenta

v green

v cyan

v yellow

v white

(presentation property)

No special considerations.

Initial cursor field cursor = yes | no

(form field property)

No special considerations.

264 Rational Software Development Platform: VisualAge Generator to EGL Migration Guide

Table 99. Map constant and variable fields — attributes (continued)

VisualAge Generator 4.5 EGL produced by the migration tool Migration tool considerations

Input required inputRequired (validation property) The migration tool merges the VAGen

Input required attribute and the Input

required edit as follows:

v If either the Input required attribute

or the Input required edit is selected,

the migration tool includes

inputRequired.

v If neither is selected, the migration

tool omits inputRequired.

Require fill on input fill (validation property) No special considerations.

Numeric attribute

Note: This property is

supported for CHA fields,

including CHA fields that have

Numeric edit selected.

isDecimalDigit (validation property)

Note: This property is only supported

for char fields.

If the Numeric attribute is selected, the

migration tool does the following:

v Includes isDecimalDigit for char

fields.

v Omits isDecimalDigit for numeric

fields. EGL provides a software edit

for numeric fields to maintain

compatibility with VAGen.

See “Map fields and the numeric

hardware attribute” on page 79 for

additional details.

Modified data tag modified (presentation property) No special considerations.

Light pen detect detectable (presentation property) No special considerations.

Outlining:

v left

v right

v over

v under

v box

outline:

v left

v right

v top

v bottom

v box

(presentation property)

No special considerations.

 Table 100. Map variable fields — general edits

VisualAge Generator 4.5 EGL produced by the migration tool Migration tool considerations

Edit routine validatorFunction OR

validatorDataTable

(validation property)

The migration tool does the following:

v Sets the validatorFunction property

if the map edit routine is EZEC10 or

EZEC11.

v Sets the validatorFunction property

if the edit routine is a function.

v Sets the validatorDataTable property

if the edit routine is a table.

Note: Special considerations apply if

the edit routine is not available during

migration. See “Map variable fields

and edit routines” on page 78 for

additional details and potential

problems.

Appendix B. Relationship of VisualAge Generator and EGL Language Elements 265

Table 100. Map variable fields — general edits (continued)

VisualAge Generator 4.5 EGL produced by the migration tool Migration tool considerations

Justify - Left | Right | None

Note: For map items, the default

is right for numeric fields and

left for all other fields.

align = left | right | none

(formatting property)

Note: For form fields, the default is

right for numeric fields and left for all

other fields.

No special considerations.

Date edit mask

Values are as follows:

v SYSGREGRN

v SYSJULIAN

v dateEditPattern

dateFormat = value

Values are as follows:

v systemGregorianDateFormat

v systemJulianDateFormat

v ″dateEditPattern″

(formatting property)

Note: In the dateEditPattern, the

migration tool converts to the following

EGL notation:

v yy or yyyy indicates the year.

v MM indicates the month.

v dd indicates the day of the month.

v DDD indicates the day of the year.

No special considerations.

Minimum input minimumInput (validation property) No special considerations.

Fill character

Note: The default fill character

for items used on a map is null

for character, DBCS, or MIXED

fields; blank for numeric fields;

and 0 for hex fields.

fillCharacter (formatting property)

Note:

v The default fill character for items

used on a map is null for char,

dbchar, or mbchar fields; blank for

numeric fields; and 0 for hex fields.

v strLib.nullFill is the EGL constant for

the null fill character. Alternatively,

use ″″ (two consecutive quotes).

No special considerations.

Fold upperCase (formatting property) The migration tool does the following:

v If Variable field folding is specified

for the entire map, the migration

tool includes upperCase=yes for

every character and mixed field.

v If Variable field folding is not

specified for the entire map, the

migration tool uses the Fold

information specified for each

character or mixed field to determine

whether to set the upperCase

property for that field.

Hex edit isHexDigit (validation property) No special considerations.

266 Rational Software Development Platform: VisualAge Generator to EGL Migration Guide

Table 100. Map variable fields — general edits (continued)

VisualAge Generator 4.5 EGL produced by the migration tool Migration tool considerations

Input required inputRequired (validation property) The migration tool merges the VAGen

Input required attribute and the Input

required edit as follows:

v If either the Input required attribute

or the Input required edit is selected,

the migration tool includes

inputRequired.

v If neither is selected, the migration

tool omits inputRequired.

Check SO/SI space needsSOSI (validation property) No special considerations.

 Table 101. Map variable fields — numeric edits

VisualAge Generator 4.5 EGL produced by the migration tool Migration tool considerations

Minimum value and Maximum

value

Note: If either Minimum value

or Maximum value is specified,

both must be specified.

validValues = [[minimumValue,

maximumValue]]

(validation property)

Note: Multiple pairs of values and single

values can be listed in the validValues

property.

The migration tool combines the

Minimum value and Maximum value

into the EGL validValues property.

Sign = None | Leading |

Trailing

Note: The default sign for

numeric items on a map is

None.

sign = none | leading | trailing

(formatting property)

Note: The default sign for a numeric field

is always leading.

For a numeric field, the migration

tool migrates the first of the following

that applies:

v If the map sign edit is specified, the

tool migrates to the corresponding

sign property.

v If the map sign edit is not

specified, the tool sets sign = none.

Currency currency = yes | no

currencySymbol = ″symbol″

(formatting property)

Note: If currency = yes but the

currencySymbol is not specified, the

actual currency symbol used at runtime is

set the same way it is in VisualAge

Generator.

The migration tool only sets currency

to yes or no. The tool never sets

currencySymbol=″symbol″ for form

variable fields because there was no

equivalent information in VisualAge

Generator.

Separator numericSeparator (formatting property) No special considerations.

Zero edit zeroFormat (formatting property) No special considerations.

Appendix B. Relationship of VisualAge Generator and EGL Language Elements 267

Table 102. Map variable fields — error messages

VisualAge Generator 4.5 EGL produced by the migration tool Migration tool considerations

Edit routine validatorFunctionMsgKey OR

validatorDataTableMsgKey

(validation properties)

The migration tool migrates the

edit routine message as follows:

v Sets validatorFunctionMsgKey if

the edit routine is EZEC10 or

EZEC11.

v Sets validatorDataTableMsgKey

if the edit routine is a table.

v Does not migrate the edit routine

message if the edit routine is a

function because the message is

not used in this situation in

VisualAge Generator.

See “Map variable fields and edit

routines” on page 78 for additional

details and potential problems.

Minimum input minimumInputMsgKey (validation property) No special considerations.

Input required inputRequiredMsgKey (validation property) No special considerations.

Data type typeChkMsgKey (validation property) No special considerations.

Numeric range validValuesMsgKey (validation property) No special considerations.

Programs

The programs section is organized into the following tables:

v Programs - general syntax, program type, called parameters, and prolog

Table 103 on page 269

v Programs - program specifications, properties, tables and additional records list

Table 104 on page 271

v Programs - main functions and flow statements Table 105 on page 275

268 Rational Software Development Platform: VisualAge Generator to EGL Migration Guide

Table 103. Programs — general syntax, program type, called parameters, and prolog

VisualAge Generator 4.5 EGL produced by the migration

tool

Migration tool considerations

Programs part:

v programName

v Program type

v Specifications (vary based on

program type):

– Working Storage record

– PSB

– Firstmap

– First UI Record

– Map Group

– Help Map Group

v Tables and Additional Records

v Called Parameters

v Prolog

v Properties (vary based on program

type)

v Structure diagram

– Main Functions

– Flow Statements (hidden in the

structure diagram, but can be

specified for any main function)

EGL syntax sample:

//*** Program=programName

// prolog

//*******************

Program programName

 type eglProgramType

 //vagenProgramType

[(calledParameters)]

{

[alias= "originalProgramName"]

includeReferencedFunctions

 =yes,

allowUnqualifiedItemReferences

 =yes,

localSQLScope=yes,

throwNrfEofExceptions=yes,

handHardIOErrors=no

[propertiesBasedOnType]

}

 [dataDeclarations]

 [useDeclarations]

 function main ()

 { functionLabel:

 functionName() ;

 [{functionFlowStatements}]}

 end // end main

end // end programName

The migration tool does not rename

programs for you even if they conflict

with the EGL reserved word list. The

migration tool does not set the alias

property. If you must rename a

program, you can use the alias

property to specify the original name

of the VAGen program. See “Program

names and reserved words” on page

83.

The migration tool includes the

VAGen program type as a comment in

the program definition.

The migration tool migrates the Tables

and Additional Records list as follows:

v Records migrate to

dataDeclarations.

v Tables migrate to useDeclarations.

The migration tool always includes the

following properties to preserve

VAGen behavior:

v includeReferencedFunctions

v allowUnqualifiedItemReferences

v localSQLScope

v throwNrfEofExceptions

v handleHardIOErrors

Programs types:

v Main transaction

v Called Transaction

v Main Batch

v Called Batch

v Web Transaction

Note: See later row on ″Main

Transaction Exection Mode Values″

for additional details.

EGL program types:

v textUIProgram

v textUIProgram

v basicProgram

v basicProgram

v VGWebTransaction

The migration tool includes the

VAGen program type as a comment in

the program definition. See Table 104

on page 271 for information on how

the segmentation values correspond to

EGL properties.

Appendix B. Relationship of VisualAge Generator and EGL Language Elements 269

Table 103. Programs — general syntax, program type, called parameters, and prolog (continued)

VisualAge Generator 4.5 EGL produced by the migration

tool

Migration tool considerations

Called Parameters

Note:

v Called parameters are entered in a

special window.

v The parameter type indicates

whether the parameter is an item,

record, or map.

v The parameter name is always the

name of another VAGen part.

There is no equivalent of an EGL

type definition or primitive type.

v Two special function words are

supported as parameters:

– EZEDLPSB

– EZEDLPCB[n], where n is a

numeric literal

See the next rows of this table for

details.

EGL called parameters example:

(parameterName typeInfo

 { , parameterName typeInfo })

Note:

v Parameters must be separated by

commas.

v A parameter can be a dataItem,

record, or form. There is no direct

correspondence to the VAGen

parameter types.

v The EGL typeInfo can be:

– a primitive type for a dataItem

– a type definition for a dataItem,

record, or form.

The migration tool includes the

original VAGen parameter type as a

comment.

If you select the Migration Syntax

Preference Convert shared data items to

primitive item definitions and the data

item part is available, the migration

tool converts the shared item to an

EGL parameter that is declared using

a primitive definition based on the

type, length, and decimals specified

for the data item part. Migration of

type, length, and decimals information

is the same as described in Table 71 on

page 229.

If you do not select the Migration

Syntax Preference Convert shared data

items to primitive item definitions or the

data item part is not available, the

migration tool converts the shared

item to an EGL parameter that is

declared using a type definition. For

migration, the type definition is

always the same as the item name.

Special considerations apply. See

“Redefined records” on page 66 for

details and potential problems.

Called parameter: EZEDLPSB EGL called parameter example to

pass the PSB:

 parameter list:

(psbData psbDataRecord)

program properties:

{ @DLI { psbParm = ″psbData″ }}

No special considerations.

270 Rational Software Development Platform: VisualAge Generator to EGL Migration Guide

Table 103. Programs — general syntax, program type, called parameters, and prolog (continued)

VisualAge Generator 4.5 EGL produced by the migration

tool

Migration tool considerations

Called parameter: EZEDLPCB[n]

where n is a numeric literal

EGL called parameter example to

pass the PCBs:

 parameter list:

(pcbName

 pcbType_PCBRecord)

program properties:

{ @DLI {

 pcbParms = [pcbList] } }

Note:

v The pcbList is used to match the

name of the PCB parameter to its

corresponding position within the

program’s PSB.

v The values for pcbType are:

– IO

– ALT

– DB

– GSAM

The migration tool always uses a

pcbName in the form: pcbn, where n

is the same numeric literal used in

VAGen called parameter list.

If the program’s PSB part is available,

the migration tool does the following:

v Includes the pcbType information.

v Includes the pcbList information to

associate each PCB parameter with

the corresponding PCB in the PSB

part.

Special considerations apply if the

program’s PSB part is not available.

For details, see “Program with

EZEDLPCB in called parameter list”

on page 86.

Prolog Not applicable. The migration tool converts the prolog

to a comment that precedes the

program definition.

 Table 104. Programs — program specifications, properties, tables and additional records list

VisualAge Generator 4.5 EGL produced by the migration tool Migration tool considerations

General information:

v Some VAGen properties and

specifications migrate to EGL

properties, data declarations, or

use declarations.

General information:

v The rows that follow indicate

whether the corresponding EGL

language element is a program

property, data declaration, or use

declaration.

No special considerations.

Main Transaction Execution Mode

values:

v Nonsegmented

v Segmented

v Single segment

Note: Called transactions always

run in nonsegmented mode.

segmented — values:

v segmented = no

v segmented = yes

v segmented = yes

(program property)

Note: The segmented property is not

specified for called programs.

If the segmented information is not in

the External Source Format file, the

migration tool defaults to segmented =

no.

Appendix B. Relationship of VisualAge Generator and EGL Language Elements 271

Table 104. Programs — program specifications, properties, tables and additional records list (continued)

VisualAge Generator 4.5 EGL produced by the migration tool Migration tool considerations

Working Storage record

(Specifications)

v The Working Storage record can

be specified for both main and

called programs. It is sometimes

referred to as the program’s

primary working storage record.

v The primary working storage

record is always initialized.

inputRecord (program property)

v The inputRecord property can only

be specified for main programs.

v The inputRecord is always

initialized.

v A data declaration is also required.

The migration tool converts the

primary working storage record to the

inputRecord property for main

programs.

The migration tool also includes a

data declaration for the primary

working storage record for both main

and called programs. The tool

includes the initialized = yes property

for the data declaration in called

programs.

If the primary working storage record

contains level 77 items, the migration

tool includes a data declaration

statement for the level 77 record.

See “Level 77 items in records” on

page 67 for details and potential

problems.

PSB (Specifications)

Note: In VisualAge Generator, the

PSB is a part type.

EGL uses both program properties

and a record declaration to specify a

PSB:

 program properties:

{ @DLI { psb = ″psbName″,

 callInterface =

 DLICallInterfaceKind.CBLTDLI,

 handleHardDLIErrors = yes }}

program record declaration:

 psbName psbPartName ;

Note: In EGL, the PSB is a subtype

of the record part.

The migration tool always uses psb as

value for the psb property. This

ensures that any function that needs

to reference a variable in the PSB can

qualify the variable with psb.

The migration tool always includes

the following properties for an IMS or

DL/I program to preserve VAGen

behavior:

v callInterface

v handleHardDLIErrors

The migration tool includes a

declaration of a variable called psb

and specifies psbPartName as the name

of the VAGen PSB part after any

required renaming.

Firstmap (Specifications) inputForm (program property) No special considerations.

First UI Record (Specifications) inputUIRecord (program property) No special considerations.

Map Group (Specifications) use formGroup.formName

 {, formGroup.formName }

Note: use formGroup is also

permitted. In this case, all forms

within the formGroup are used to

resolve unqualified variable names.

The migration tool includes the

following maps:

v Maps used in CONVERSE,

DISPLAY, and CLOSE I/O options.

v Maps used in an XFER with a map

statement.

v Maps listed in the program’s called

parameter list.

v The map specified as the First Map

for the program.

Help Map Group (Specifications) use formGroup { helpGroup=yes }

(use declaration)

No special considerations.

272 Rational Software Development Platform: VisualAge Generator to EGL Migration Guide

Table 104. Programs — program specifications, properties, tables and additional records list (continued)

VisualAge Generator 4.5 EGL produced by the migration tool Migration tool considerations

Message table prefix (Program

property)

msgTablePrefix (program property) No special considerations.

Allow implicit data items (Program

property)

Not supported. The migration tool does not create

implicit definitions for you. See

“Implicit data items in programs” on

page 84 for details and potential

problems.

Keys assignment:

v Help key (1 key)

v Bypass keys (up to 5 keys)

v F1–12 = F13–24

(Program property)

Note: The keys assignment is

specified once for the program and

applies to both the map group and

the help map group.

EGL keys assignment example:

use formGroup

 { [helpGroup = yes,]

 helpKey = pfNumber,

 validationBypassKeys =

 [pfNumberList] ,

 pfKeyEquate = yes | no } ;

(Use declaration properties for the

program’s formGroup and help

formGroup.)

Note:

v The values in the

validationBypassKeys list must be

separated by commas.

v The validationBypassKeys

property is not specified for the

program’s help formGroup.

The migration tool includes the EGL

equivalent of the keys assignment

information on the use declaration

statements for both the formGroup

and the help formGroup. The

migration tool omits the

validationBypassKeys property from

the use declaration for the help

formGroup.

Appendix B. Relationship of VisualAge Generator and EGL Language Elements 273

Table 104. Programs — program specifications, properties, tables and additional records list (continued)

VisualAge Generator 4.5 EGL produced by the migration tool Migration tool considerations

Tables and Additional Records:

v Records

Note:

v Redefinition information is stored

in the VAGen Redefined record,

not in the program.

v Records that are used as I/O

objects are never included in the

Tables and Additional Records list.

EGL additional record example:

recordName recordName

 [{ redefines = "otherRecord"}];

(data declaration)

Note:

v The redefines property must be

specified on the program’s data

declaration if the record provides a

different record layout for the

same physical storage as another

record.

v Data declarations are required for

all records used in the program,

including the I/O records.

The migration tool always uses the

same record name as the type

definition.

If a VAGen record is used in the

program as a redefined record, the

migration tool includes the redefines

property on the data declaration

statement. See “Redefined records” on

page 66 for details and potential

problems.

The migration tool also includes data

declarations for all records that are

used as I/O objects by the program.

The migration tool includes data

declarations for records that are

specified as attributes of any MQ

Message record that is used as an I/O

object by the program.

If the program specifies a PSB, the

migration tool includes data

declarations for all DL/I segments

used as I/O objects or in the

hierarchical path to an I/O object.

For Web transaction programs, the

migration tool includes data

declarations for UI records that are

referenced in a CONVERSE I/O

statement or in an XFER statement.

Tables and Additional Records:

v Tables

v You can specify Keep After Use

for each table.

EGL use declaration example:

use tableName

 [{deleteAfterUse = yes}];

(use declaration)

The migration tool converts tables on

the Tables and Additional Records list

to use declarations.

DeleteAfterUse has the opposite

meaning from the VAGen Keep After

Use. The migration tool reverses yes

and no.

If you select the VAGen Migration

Preference Do not include deleteAfterUse

for tables, the migration tool

automatically omits the deleteAfterUse

property and issues a warning

message for the affected program and

table.

274 Rational Software Development Platform: VisualAge Generator to EGL Migration Guide

Table 105. Programs — main functions and flow statements

VisualAge Generator 4.5 EGL produced by the migration

tool

Migration tool considerations

VAGen programs specify the main

functions as the top-level functions

in the VAGen Structure Diagram. All

other functions appear only when

you expand the Structure Diagram.

Each main function can have flow

statements. These statements do not

appear in the Structure Diagram, but

can be accessed from the diagram.

EGL programs specify only one main

function. This function is always

named main.

There are no flow statements.

An example of the syntax for the

program’s main function is as

follows:

function main ()

 { functionLabel:

 functionName() ;

[{ functionFlowStatements }] }

end // end main

The migration tool builds the EGL

main function. The tool includes the

following within the main function for

each VAGen main function:

v functionLabel so that the VAGen

main function can be referenced in

an EGL exit stack functionLabel

statement. The tool always sets the

functionLabel to the functionName.

v function invocation statement to

invoke the VAGen main

functionName.

v flow statements, if any, for the

VAGen main function.

See the following for details on the

migration of flow statements:

v See “Statements” on page 292

v See “EZE words” on page 305

v See “Service Routines” on page 313

Functions

The following tables compare the VAGen function part with the EGL function part

and describe how the migration tool handles the conversion.

The functions section is organized into the following tables:

v Functions - general syntax, description, parameters, return value, and local

storage, Table 106 on page 276

v Functions - EXECUTE I/O option, Table 107 on page 278

v Functions - I/O options for maps and UI records, Table 108 on page 279

v Functions - I/O for files or databases — general information and I/O error

routine, Table 109 on page 279

v Functions - I/O options for serial, indexed, relative, and message queue records,

Table 110 on page 280

v Functions - I/O options for default (unmodified) SQL statements, without

Execution Time Statement Build, Table 111 on page 281

v Functions - I/O options for modified SQL statements, without Execution Time

Statement Build, Table 112 on page 283

v Functions - I/O options for SQL statements with Execution Time Statement

Build, Table 113 on page 286

v Functions - I/O options for default (unmodified) DL/I statements, Table 114 on

page 288

v Functions - Segment Search Arguments for modified DL/I statements, Table 115

on page 289

Appendix B. Relationship of VisualAge Generator and EGL Language Elements 275

Table 106. Functions — general syntax, description, parameters, return value, and local storage

VisualAge Generator 4.5 EGL produced by the migration tool Migration tool considerations

Function parts can contain the

following:

v Function name

v I/O option

v I/O object

v Properties:

– Error routine

– Description

v Function return value

v Function parameters

v Function local storage

v SQL statement

v DL/I call

v Statements before the I/O

option

v Statements after the I/O option

Function parts can contain the

following:

v functionName

v functionParameterList

v returnItemType

v dataDeclarations

v Statements before the I/O statement

v I/O statement

v Statements after the I/O Statements

An example of the format of a

function created by the migration tool

is as follows:

// Description

Function functionName

 (functionParamterList)

 [returns(returnItemType)]

 [dataDeclarations]

 [beforeStatements]

 [I/O Statement]

 [afterStatements]

end // end functionName

Note:

v The VAGen I/O option, I/O object,

error routine, SQL statement, and

DL/I call are used to create the EGL

I/O statement.

For details on how the migration tool

handles the Description, Function

return value, Function parameters, and

Function local storage, see the

following rows in this table.

See the following for details on the

migration of before and after

statements:

v For statements, see “Statements” on

page 292.

v For EZE words, see “EZE words” on

page 305.

v For service routines, see “Service

Routines” on page 313.

See the following for details on I/O

options and error routines:

v See Table 107 on page 278 for the

EXECUTE I/O option.

v See Table 108 on page 279 for I/O

options for maps and UI records.

v See Table 109 on page 279 general

information on file and database

I/O.

v See Table 110 on page 280 for I/O

options for serial, indexed, relative,

and message queue records.

For details on SQL statements, see the

following tables in this section:

v See Table 111 on page 281 for I/O

options for unmodified SQL

statements.

v See Table 112 on page 283 for I/O

options for modified SQL statements

without Execution Time Statement

Build.

v See Table 113 on page 286 for I/O

options for SQL statements with

Execution Time Statement Build.

For details on DL/I calls, see the

following tables in this section:

v See Table 114 on page 288 for I/O

options for default (unmodified)

DL/I statements.

v See Table 115 on page 289 for

Segment Search Arguments for

modified DL/I statements.

Description Not applicable The migration tool converts the

function description to a comment that

precedes the Function definition.

276 Rational Software Development Platform: VisualAge Generator to EGL Migration Guide

Table 106. Functions — general syntax, description, parameters, return value, and local storage (continued)

VisualAge Generator 4.5 EGL produced by the migration tool Migration tool considerations

Function parameters:

v Function parameters are entered

in a special window.

v Items used as function

parameters can be shared or

nonshared. The definition for

nonshared items is stored in the

function.

Function parameters:

v Parameters must be separated by

commas.

v Each parameter has type

information.

v Optionally, each parameter has

parameter type information.

An example of the format of function

parameters is as follows:

(parameterName typeInfo

 [parameterType]

 { , parameterName typeInfo

 [parameterType] })

A specific example of function

parameters is as follows:

(parmSharedItem parmSharedItem

 field,

 parmNonSharedItem char(10)

 nullable,

 parmRecord parmRecord)

Function parameters:

The migration tool sets the type

information as follows:

v For a record, the typeInfo is a type

definition that specifies the same

record name.

v If the item type is one of the VAGen

Any* types, the typeInfo is the

corresponding EGL special item

type.

v If the item is a shared data item,

then the migration tool does the

following:

– If you select the Migration Syntax

Preference Convert shared data

items to primitive item definitions

and the data item part is

available, the migration tool

converts the shared item to an

EGL function parameter that is

declared using a primitive

definition based on the type,

length, and decimals specified for

the data item part. Migration of

type, length, and decimals

information is the same as

described in Table 71 on page

229.

– If you do not select the Migration

Syntax Preference Convert shared

data items to primitive item

definitions or the data item part is

not available, the migration tool

converts the shared item to an

EGL function parameter that is

declared using a type definition.

For migration, the type definition

is always the same as the item

name.

v If the item is a nonshared data item,

then the typeInfo is migrated based

on the item type, length, and

decimals, and follows the rules

described in Table 71 on page 229.

Function parameters:

v Function parameter types:

– Record

– Item

– Map item

– SQL item

Function parameters:

v Function parameter types:

– Not applicable

– Not applicable

– field

– nullable

Function parameters:

v Special item types, length is not

specified:

– AnyChar

– AnyDBCS

– AnyMix

– AnyHex

– AnyUnicode

– AnyNumeric

Function parameters:

v Special item types, length is not

specified:

– char

– dbchar

– mbchar

– hex

– unicode

– number

Function return value:

v Data type

v Length

v Decimals

v Description

EGL returns value:

v The following is an example of the

returns statement format:

 returns(returnItemType)

 // Description

If the function includes a return value,

the migration tool migrates the data

type, length, and decimals based the

rules described in Table 71 on page

229.

Appendix B. Relationship of VisualAge Generator and EGL Language Elements 277

Table 106. Functions — general syntax, description, parameters, return value, and local storage (continued)

VisualAge Generator 4.5 EGL produced by the migration tool Migration tool considerations

Function local storage:

v Function local storage is entered

in a special window.

v Items used as function local

storage can be shared or

nonshared. The definition for

nonshared items is stored in the

function.

Function variable declarations:

v Function variable declarations must

include variable names and their

associated type information.

v An example of the format of

function variable declarations is as

follows:

// Function Declarations

 variableName typeInfo ;

 { variableName typeInfo ; }

The migration tool sets the typeInfo as

follows:

v For a record, the typeInfo is a type

definition that specifies the same

record name.

v If the item is a shared data item,

then the migration tool does the

following:

– If you select the Migration Syntax

Preference Convert shared data

items to primitive item definitions

and the data item part is

available, the migration tool

converts the shared item to an

EGL variable that is declared

using a primitive definition based

on the type, length, and decimals

specified for the data item part.

Migration of type, length, and

decimals information is the same

as described in Table 71 on page

229.

– If you do not select the Migration

Syntax Preference Convert shared

data items to primitive item

definitions or the data item part is

not available, the migration tool

converts the shared item to an

EGL variable that is declared

using a type definition. For

migration, the type definition is

always the same as the item

name.

v If the item is a nonshared data item,

then the typeInfo is migrated based

on the item type, length, and

decimals, and follows the rules

described in Table 71 on page 229.

Function local storage:

v Function local storage types:

– Record

– Item

Function local storage:

v Function local storage types:

– Not applicable

– Not applicable

 Table 107. Functions — EXECUTE I/O option

VisualAge Generator 4.5 EGL produced by the migration tool Migration tool considerations

v I/O object: none

v I/O option: EXECUTE

No equivalent statement. The migration tool eliminates the

EXECUTE I/O option.

278 Rational Software Development Platform: VisualAge Generator to EGL Migration Guide

Table 108. Functions — I/O options for maps and UI records

VisualAge Generator 4.5 EGL produced by the migration tool Migration tool considerations

v I/O object: mapName

v I/O option: DISPLAY

Note: DISPLAY is used for both

display and printer maps.

To display a text form, use the display

statement. To print a print form, use

the print statement.

The following are examples of a

display statement and a print

statement:

display mapName;

print mapName;

Note: In VisualAge Generator

Compatibility mode, display printForm

is treated as though it is print

printForm.

The migration tool converts to the

display or print statement based on

the map type. See “DISPLAY

statement for maps” on page 89 for

details and potential problems.

v I/O object: mapName

v I/O option: CONVERSE

Use the converse statement.

The following is an example of a

converse statement:

converse mapName;

No special considerations.

v I/O object: UIRecordName

v I/O option: CONVERSE

Use the converse statement. The

following is an example of a converse

statement:

converse UIRecordName;

No special considerations.

 Table 109. Functions — I/O for files or databases — general information and I/O error routine

VisualAge Generator 4.5 EGL produced by the migration tool Migration tool considerations

VAGen record I/O:

v I/O option

v I/O object (always a record)

v I/O error routine (optional)

Note: The record can be a serial,

indexed, relative, message queue,

SQL row, or DL/I segment record.

EGL record I/O:

v An I/O statement

v Record name

v try onException end statement with

error routine name (optional)

If an I/O error routine is specified, the

statements are enclosed within a

try...end block. An example of file or

database I/O with an error routine is

as follows:

try

 add recordName ;

 [onException error-routine ;]

end

The migration tool does the following:

v Changes the VAGen I/O option to

the corresponding EGL I/O

statement.

Appendix B. Relationship of VisualAge Generator and EGL Language Elements 279

Table 109. Functions — I/O for files or databases — general information and I/O error routine (continued)

VisualAge Generator 4.5 EGL produced by the migration tool Migration tool considerations

An error routine is optional for

functions that do file or database

I/O.

Note: The error routine is

invoked if there is a soft error or

if EZEFEC = 1.

An error routine is optional for

functions that do I/O for records. An

I/O example without an error routine

is as follows:

add recordName;

An I/O example with an error routine

is as follows:

try

 add recordName ;

 onException error-routine ;

end

Note: The onException statement is

invoked if there is a soft error or if

handleHardIOErrors = 1. If the

function does DL/I I/O, the

onException statement is also invoked

if handleHardDLIErrors = 1.

The migration tool does the following:

v If the error-routine is not specified,

the tool does not include the try,

onException, or end statements.

v If an error-routine is specified, the

tool includes the try and end

statements.

v The migration tool converts to the

onException statement based on the

VAGen error routine name. When

the migration tool migrates

programs, it always migrates the

VAGen main function names to both

the main function label and the

main function invocation statement.

That way, when migrating a

function’s I/O error routine, the

mainFunctionLabel is always the

same as the mainFunctionName.

Special considerations apply for the

migration of error routines that are

function names. See “I/O error

routine” on page 90 for details and

potential problems.

Error routine values:

EZECLOS

EZEFLO

EZERTN

mainFunctionName

nonmainFunctionName

onException block statements:

onException exit program;

onException exit stack;

Omit the onException statement.

onException exit stack

 mainFunctionLabel;

onException

 nonmainFunctionName();

 Table 110. Functions — I/O options for serial, indexed, relative, and message queue records

VisualAge Generator 4.5 EGL produced by the migration tool Migration tool considerations

v I/O object: recordName

v I/O option: ADD

Use the add statement. The following is

an example:

add recordName;

No special considerations.

v I/O object: recordName

v I/O option: SCAN

Use the get next statement. The

following is an example:

get next recordName;

No special considerations.

v I/O object: recordName

v I/O option: SCANBACK

Use the get previous statement. The

following is an example:

get previous recordName;

No special considerations.

v I/O object: recordName

v I/O option: CLOSE

Use the close statement. The following

is an example:

close recordName;

No special considerations.

v I/O object: recordName

v I/O option: INQUIRY

Use the get statement. The following is

an example:

get recordName;

No special considerations.

v I/O object: recordName

v I/O option: UPDATE

Use the get forUpdate statement. The

following is an example:

get recordName forUpdate;

No special considerations.

280 Rational Software Development Platform: VisualAge Generator to EGL Migration Guide

Table 110. Functions — I/O options for serial, indexed, relative, and message queue records (continued)

VisualAge Generator 4.5 EGL produced by the migration tool Migration tool considerations

v I/O object: recordName

v I/O option: DELETE

Use the delete statement. The following

is an example:

delete recordName;

No special considerations.

v I/O object: recordName

v I/O option: REPLACE

Use the replace statement. The

following is an example:

replace recordName;

No special considerations.

 Table 111. Functions — I/O options for default (unmodified) SQL statements without Execution Time Statement Build)

VisualAge Generator 4.5 EGL produced by the migration tool Migration tool considerations

v I/O object: recordName

v I/O option: ADD

Use the add statement. The following is

an example:

add recordName;

No special considerations.

v I/O object: recordName

v I/O option: SCAN

Use the get next statement. The

following is an example:

get next recordName;

No special considerations.

v I/O object: recordName

v I/O option: CLOSE

Use the close statement. The following

is an example:

close recordName;

No special considerations.

v I/O object: recordName

v I/O option: INQUIRY

(with and without Single row

select)

Use the get statement. If you are doing

a single row select, also use singleRow.

An example without single row select

is as follows::

get recordName;

An example with single row select is

as follows:

get recordName singleRow;

If Single row select is specified in

VisualAge Generator, the migration

tool includes the EGL singleRow

option.

v I/O object: recordName

v I/O option: UPDATE

Use the get forUpdate statement. The

following is an example:

get recordName forUpdate

 resultSetID;

The migration tool always includes the

resultSetID when migrating an SQL

UPDATE statement. The tool sets the

resultSetID to the function name

followed by a customer-specified

suffix. You can control the suffix with

the Stage 2 VAGen Migration

Preferences.

Special considerations apply if the

migration tool cannot determine if the

record is SQL or non-SQL. See “SQL

I/O with multiple updates” on page 96

for details and potential problems.

v I/O object: recordName

v I/O option: DELETE

Use the delete statement. The following

is an example:

delete recordName;

No special considerations.

Appendix B. Relationship of VisualAge Generator and EGL Language Elements 281

Table 111. Functions — I/O options for default (unmodified) SQL statements without Execution Time Statement

Build) (continued)

VisualAge Generator 4.5 EGL produced by the migration tool Migration tool considerations

v I/O object: recordName

v I/O option: REPLACE

(with or without

UPDATE/SETUPD functionName)

Use the replace statement. The

following are some examples:

replace recordName;

replace recordName from

 resultSetID;

If the UPDATE/SETUPD function

name was included in VisualAge

Generator, the migration tool includes

the resultSetID and sets the resultSetID

to the UPDATE/SETUPD function

name followed by a customer-specified

suffix. You can control the suffix with

the Stage 2 VAGen Migration

Preferences.

v I/O object: recordName

v I/O option: SETINQ

(with and without Declare cursor

with hold)

Use the open statement. If you are

doing a Declare cursor with hold, also

use the hold option. The following are

examples of both types of statement:

open resultSetID for recordName;

open resultSetID hold

 for recordName;

The migration tool sets the resultSetID

to the function name followed by a

customer-specified suffix. You can

control the suffix with the Stage 2

VAGen Migration Preferences.

If Declare cursor with hold is selected in

VisualAge Generator, the migration

tool includes the EGL hold option.

v I/O object: recordName

v I/O option: SETUPD

(with and without Declare cursor

with hold)

Use the open forUpdate statement. If

you are doing a Declare cursor with

hold, also use the hold option. The

following are examples of both types

of statement:

open resultSetID forUpdate

 for recordName;

open resultSetID hold forUpdate

 for recordName;

The tool sets the resultSetID to the

function name followed by a

customer-specified suffix. You can

control the suffix with the Stage 2

VAGen Migration Preferences.

If Declare cursor with hold is selected in

VisualAge Generator, the migration

tool includes the EGL hold option.

v I/O object: recordName

v I/O option: SQLEXEC

with Model SQL Statement

Note:

v The SQL record name is

included in this form of

SQLEXEC.

v The values for the model type

are:

– None

– Update

– Delete

v If the model type is None,

VisualAge Generator does not

do any I/O. Generation still

processes the I/O error routine,

but there will not be an error.

Use the execute statement. The

following is an example:

execute modelType for recordName;

Note: modelType is either update or

delete.

The migration tool sets the EGL

modelType based on the VAGen Model

SQL Statement value.

If the VAGen Model SQL Statement is

None, the migration tool omits the I/O

statement because the VAGen I/O

statement did not do anything. The

migration tool includes the try,

onException, and end statements based

on the function’s I/O error routine.

282 Rational Software Development Platform: VisualAge Generator to EGL Migration Guide

Table 112. Functions — I/O options for modified SQL statements, without Execution Time Statement Build

VisualAge Generator 4.5 EGL produced by the migration tool Migration tool considerations

General Information for modified

SQL statements:

v VisualAge Generator builds the

table clause from the SQL row

record at test and generation

time. The table clauses are as

follows:

– insert into sqlTableName for

the ADD I/O option

– from sqlTableName

sqlTableLabel for the

INQUIRY, UPDATE,

SETINQ, and SETUPD I/O

options

– update sqlTableName for the

REPLACE I/O option

v Depending on when the

function was last modified,

other SQL clauses might not be

stored in the function

definition. If the SQL clause is

not stored, VisualAge

Generator creates a default

clause based on the record

definition of the I/O object.

v !itemColumnName variables

are permitted. These variables

specify the name of an item in

the SQL row record. At test or

generation time, VisualAge

Generator substitutes the

corresponding SQL column

name.

v sqlClauses are written in SQL

syntax.

General Information for modified SQL

statements:

v If you need to modify any SQL

clause, EGL requires that all clauses

be explicitly specified. The table

clause must be explicitly included in

the SQL statement. The table clauses

are as follows:

– insert into sqlTableName for the

add statement.

– from sqlTableName sqlTableLabel for

the get and open statements.

– update sqlTableName for the

replace statement.

v EGL requires that all clauses be

explicitly specified if any SQL clause

is specified. The required SQL

clauses vary with the type of I/O.

v EGL requires that the SQL column

names be explicitly included in the

SQL statement. !itemColumnName

variables are not supported.

v sqlClauses are written in SQL syntax.

The migration tool uses the tables and

table labels from the SQL row record

to build the tables clause for the EGL

I/O statement. Both table names and

table name host variables are included

in the table clause of the EGL I/O

statement.

If a required SQL clause is not stored

in the function definition, the

migration tool creates a default clause

based on the record definition in the

same way as in VisualAge Generator.

The migration tool converts any

!itemColumnName variables to their

corresponding SQL column name.

The migration tool converts VAGen

comments (/*) to SQL comments (—)

Special considerations apply if the SQL

record and its alternate specification

record, if any, are not available during

migration. See “SQL I/O statements”

on page 91 for details and potential

problems.

v I/O object: recordName

v I/O option: ADD

Clauses that can be modified:

v Columns

v VALUES

Use the add statement. The following is

an example:

add recordName

 with #sql{

 insert into

 sqlTablename

 (columnName1, columnName2)

 values

 (valueInfo1, valueInfo2)

};

The migration tool creates the insert

into clause based on the table name in

the record definition. Special

considerations apply. See “SQL I/O

statements” on page 91 for details and

potential problems.

Appendix B. Relationship of VisualAge Generator and EGL Language Elements 283

Table 112. Functions — I/O options for modified SQL statements, without Execution Time Statement

Build (continued)

VisualAge Generator 4.5 EGL produced by the migration tool Migration tool considerations

v I/O object: recordName

v I/O option: INQUIRY

(with and without Single row

select)

Clauses that can be modified:

v SELECT

v INTO

v WHERE, GROUP BY, HAVING

v ORDER BY

Use the get statement.

The following is an example with

single row select:

get recordName singleRow

 with #sql{

 select

 Name1,

 Name2,

 Age

 from

 sqlTable1 sqlLabel1,

 sqlTable2 sqlLabel2

 where

 Name1 = :Namex

 order by

 Age

}

into

 nameA, nameB, myage;

If Single row select is specified in

VisualAge Generator, the migration

tool includes the EGL singleRow

option.

The migration tool creates the from

clause based on the table names and

table labels in the record definition.

Special considerations apply. See “SQL

I/O statements” on page 91 for details

and potential problems.

v I/O object: recordName

v I/O option: UPDATE

Clauses that can be modified:

v SELECT

v INTO

v WHERE

v FOR UPDATE OF

Use the get forUpdate statement .

The following is an example:

get recordName forUpdate

 resultsetID

 with #sql{

 select

 Name1, Name2, Age

 from

 sqlTable1 sqlLabel1

 where

 Name1 = :Namex

 for update of

 Name2, Age

 }

 into

 Name1, Name2, Age;

The migration tool always includes the

resultSetID when migrating an

UPDATE statement for an SQL record.

The tool sets the resultSetID to the

function name followed by a

customer-specified suffix. You can

control the suffix with the Stage 2

VAGen Migration Preferences.

The migration tool creates the from

clause based on the table name and

table label in the record definition.

Special considerations apply. See “SQL

I/O statements” on page 91 for details

and potential problems.

v I/O object: recordName

v I/O option: REPLACE

(optional UPDATE/SETUPD

functionName)

Clause that can be modifed:

v SET

Use the replace statement.

The following is an example of the

replace statement:

replace recordName

 with #sql{

 update

 sqlTableName

 set

 columnName1 = value1,

 columnName2 = value2

 }

 from resultSetID;

If an UPDATE/SETUPD function name

is included in VisualAge Generator, the

migration tool includes the from

resultSetID clause. The migration tool

sets the resultSetID to the

UPDATE/SETUPD function name

followed by a customer-specified

suffix. You can control the suffix with

the Stage 2 VAGen Migration

Preferences.

The migration tool creates the update

clause based on the table name in the

record definition. Special

considerations apply. See “SQL I/O

statements” on page 91 for details and

potential problems.

284 Rational Software Development Platform: VisualAge Generator to EGL Migration Guide

Table 112. Functions — I/O options for modified SQL statements, without Execution Time Statement

Build (continued)

VisualAge Generator 4.5 EGL produced by the migration tool Migration tool considerations

v I/O object: recordName

v I/O object: SETINQ

(with or without Declare cursor

with hold)

Clauses that can be modified:

v SELECT

v INTO

v WHERE, GROUP BY, HAVING

v ORDER BY

Use the open statement. If you are

doing a Declare cursor with hold, also

use the hold option.

The following is an example of an open

statement using the hold option:

open resultSetID hold

 with #sql{

 select

 Name1, Name2

 from

 sqlTable1 sqlLabel1,

 sqlTable2 sqlLabel2

 where

 Name1 > :Name2

 order by

 Name1

 }

 into Name1, Name2

 for recordName;

The tool sets the resultSetID to the

function name followed by a

customer-specified suffix. You can

control the suffix with the Stage 2

VAGen Migration Preferences.

If Declare cursor with hold is selected in

VisualAge Generator, the migration

tool includes the EGL hold option after

the resultSetID.

The migration tool creates the from

clause based on the table names and

table labels in the record definition.

Special considerations apply. See “SQL

I/O statements” on page 91 for details

and potential problems.

v I/O object: record

v I/O option: SETUPD

(with or without Declare cursor

with hold)

Clauses that can be modified:

v SELECT

v INTO

v WHERE

v FOR UPDATE OF

Use the open forUpdate statement. The

following is an example using the hold

option:

open resultSetID hold forUpdate

 with #sql{

 select

 Column1, Column2

 from

 sqlTable1 sqlLabel1

 where

 Column1 > :Item1

 for update of

 Column2

 }

 into Item1, Item2

 for recordName;

The migration tool sets the resultSetID

to the function name followed by a

customer-specified suffix. You can

control the suffix with the Stage 2

VAGen Migration Preferences.

If Declare cursor with hold is selected in

VisualAge Generator, the migration

tool includes the EGL hold option.

The migration tool creates the from

clause based on the table name and

table label in the record definition.

Special considerations apply. See “SQL

I/O statements” on page 91 for details

and potential problems.

v I/O object: record

v I/O option: SQLEXEC

with Model SQL Statement

Note:

v The SQL record name is

optional in this form of

SQLEXEC.

v The values for the model type

are as follows:

– None

– Update

– Delete

Use the execute statement. The

following is an example of the

statement:

execute modelType

 #sql{

 UPDATE mysqltable

 set Column1 = Column1 * 2

 where Column2 = :Column2

 }

 for recordName;

Note: The values for model type

include Update and Delete.

The migration tool does the following:

v Converts SQLEXEC to the execute

statement.

v Uses the I/O object, if it is specified,

as the recordName in the for clause.

The migration tool includes the VAGen

Model SQL Statement value, if any, as

a comment on the EGL execute

statement.

The migration tool migrates the

VAGen SQLEXEC clauses to EGL SQL

clauses.

Appendix B. Relationship of VisualAge Generator and EGL Language Elements 285

Table 113. Functions - I/O options for modified SQL statements with Exection Time Statement Build

VisualAge Generator 4.5 EGL produced by the migration tool Migration tool considerations

Execution time statement build

can only be used with the

following I/O options:

v INQUIRY

v UPDATE

v SETINQ

v SETUPD

v SQLEXEC

You specify Execution time

statement build to cause

VisualAge Generator to prepare

the SQL statement dynamically

every time the I/O statement is

executed.

In EGL, you code the SQL prepare

statement directly whenever you want

the SQL statement to be dynamically

prepared. You must also code the open,

execute, or get statement that follows

the prepare. For example, the EGL

equivalent of a VAGen INQUIRY I/O

option with Execution time statement

build is as follows:

prepare prepID from

 "sqlStatementString"

 for recordName;

get recordName with prepID

 into itemList;

Note:

v The sqlStatementString in the

prepare statement is a concatenated

string of constants and variables that

is written in SQL notation. An

example of a where clause that uses

both column names and variable is

as follows:

[other clauses]

+ " where columnName = "

+ itemName

+ " AND columnName2 = "

+ itemName2

+ [other clauses]

v The examples shown in the rest of

this table do not include splitting the

variables outside the double quotes.

The migration tool sets the prepID to

the function name followed by a

customer-specified suffix. You can

control the suffix with the Stage 2

VAGen Migration Preferences.

The migration tool uses the SQL

clauses in the function and the table

names and table name variables in the

record definition to build the

sqlStatementString. The migration tool

builds the sqlStatementString as

follows:

v Does all the processing as though

the Execution time statement build

were not specified, including the

following:

– Using the table names and table

labels from the SQL row record to

build the tables clause for the

EGL I/O statement. Both table

names and table name host

variables are included in the

tables clause of the EGL I/O

statement.

– Creating default clauses as

necessary based on the record

definition.

– Converting any

!itemColumnName variables to

their corresponding SQL column

name.

– Converting VAGen comments (/*)

to EGL comments (//) in the

prepare statement.

Then the migration tool does

additional processing to create the

sqlStatementString, including:

v Enclosing constants, column names

and SQL operators in double quotes.

v Placing variables outside double

quotes.

v Using the + string concatenation

operator to concatenate the strings

and variables together.

Special considerations apply if the SQL

record and its alternate specification

record, if any, are not available during

migration. See “SQL I/O statements”

on page 91 for details and potential

problems.

286 Rational Software Development Platform: VisualAge Generator to EGL Migration Guide

Table 113. Functions - I/O options for modified SQL statements with Exection Time Statement Build (continued)

VisualAge Generator 4.5 EGL produced by the migration tool Migration tool considerations

v I/O object: record

v I/O option: INQUIRY

(with and without Single row

select)

Clauses that can be modified:

v SELECT

v INTO

v WHERE, GROUP BY, HAVING

v ORDER BY

Use the prepare statement. The

following is an example:

prepare prepID from

 " select columnName "

 + ", columnName2 "

 + " from table1 t1 "

 + "[where whereClause]"

 + "[order by orderByClause]"

 for recordName;

get recordname with prepID

 into itemList;

No special considerations.

v I/O object: record

v I/O option: UPDATE

Clauses that can be modified:

v SELECT

v INTO

v WHERE

v FOR UPDATE OF

Use the prepare statement. The

following is an example:

prepare prepID from

 " select columnName "

 + ", columnName2 "

 + " from table1 t1 "

 + "[where whereClause]"

 + " for Update of columnList "

 for recordName;

get recordName forUpdate

 resultSetID

 with prepID

 into itemList;

The migration tool always includes the

resultSetID when migrating an

UPDATE statement for an SQL record.

The tool sets the resultSetID to the

function name followed by a

customer-specified suffix. You can

control the suffix with the Stage 2

VAGen Migration Preferences.

v I/O object: record

v I/O option: SETINQ

(with or without Declare cursor

with hold)

Clauses that can be modified:

v SELECT

v INTO

v WHERE, GROUP BY, HAVING

v ORDER BY

Use the prepare statement. The

following is an example:

prepare prepID from

 " select columnName "

 + ", columnName2 "

 + " from table1 t1 "

 + "[where whereClause]"

 + "[order by orderByClause]"

 for recordName;

open resultSetID [hold]

 with prepID

 into itemList

 for recordName;

The migration tool sets the resultSetID

to the function name followed by a

customer-specified suffix. You can

control the suffix with the Stage 2

VAGen Migration Preferences.

If Declare cursor with hold is selected in

VisualAge Generator, the migration

tool includes the EGL hold option after

the resultSetID.

v I/O object: record

v I/O option: SETUPD

(with or without Declare cursor

with hold)

Clauses that can be modified:

v SELECT

v INTO

v WHERE

v FOR UPDATE OF

Use the prepare statement. The

following is an example:

prepare prepID from

 " select columnName "

 + ", columnName2 "

 + " from table1 t1 "

 + "[where whereClause] "

 + " for update of columnList "

 for recordName;

open resultSetID [hold]

 forUpdate

 with prepID

 into itemList

 for recordName;

The tool sets the resultSetID to the

function name followed by a

customer-specified suffix. You can

control the suffix with the Stage 2

VAGen Migration Preferences.

If Declare cursor with hold is selected in

VisualAge Generator, the migration

tool includes the EGL hold option after

the resultSetID.

Appendix B. Relationship of VisualAge Generator and EGL Language Elements 287

Table 113. Functions - I/O options for modified SQL statements with Exection Time Statement Build (continued)

VisualAge Generator 4.5 EGL produced by the migration tool Migration tool considerations

v I/O object: record

v I/O option: SQLEXEC

with Model SQL Statement

Note:

v The SQL record name is

optional in this form of

SQLEXEC.

v The values for the model type

are as follows:

– None

– Update

– Delete

Use the prepare statement. The

following is an example:

prepare prepID from

 " grant " + group_privileges

 + " on " + table_name

 + " to " + userid

 [for recordName] ;

execute prepID

 [for recordName] ;

 // model = type

The migration tool includes the VAGen

Model SQL Statement value, if any, as

a comment on the EGL execute

statement.

The migration tool converts the VAGen

SQLEXEC clauses to EGL SQL clauses.

 Table 114. Functions — I/O options for default (unmodified) DL/I statements

VisualAge Generator 4.5 EGL produced by the migration tool Migration tool considerations

v I/O object: recordName

v I/O option: ADD

v PSB: psbName

v Database identifier:

databaseName | pcbNumber

Use the add statement. The following is

an example:

add recordName

 [usingPCB pcbInfo];

The migration tool includes the

usingPCB keyword if the VAGen

function specifies the Database

identifier. The migration tool sets the

pcbInfo value based on the

information stored in the VAGen

function:

v databaseName followed by a

customer-specified suffix. You can

control the suffix with the Stage 2

VAGen Migration Preferences.

v pcbn, where n is the pcbNumber

specified in VisualAge Generator.

v I/O object: recordName

v I/O option: SCAN

v PSB: psbName

v Database identifier:

databaseName | pcbNumber

v SCAN options:

– Scan update

– Scan parent

Use the get next statement. The

following is an example:

get next recordName

 [usingPCB pcbInfo];

An example with both Scan update

and Scan parent is as follows:

get next inParent

 recordName forUpdate

 [usingPCB pcbInfo];

The migration tool includes the

usingPCB keyword if the VAGen

function specifies the Database

identifier as described for the ADD

I/O option.

The migration tool includes the

inParent keyword if the VAGen

function specifies the Scan parent

option.

The migration tool includes the

forUpdate keyword if the VAGen

function specifies the Scan update

option.

v I/O object: recordName

v I/O option: INQUIRY

v PSB: psbName

v Database identifier:

databaseName | pcbNumber

Use the get statement. The following is

an example:

get recordName

 [usingPCB pcbInfo] ;

The migration tool includes the

usingPCB keyword if the VAGen

function specifies the Database

identifier as described for the ADD

I/O option.

288 Rational Software Development Platform: VisualAge Generator to EGL Migration Guide

Table 114. Functions — I/O options for default (unmodified) DL/I statements (continued)

VisualAge Generator 4.5 EGL produced by the migration tool Migration tool considerations

v I/O object: recordName

v I/O option: UPDATE

v PSB: psbName

v Database identifier:

databaseName | pcbNumber

Use the get forUpdate statement. The

following is an example:

get recordName forUpdate

 [usingPCB pcbInfo] ;

The migration tool includes the

usingPCB keyword if the VAGen

function specifies the Database

identifier as described for the ADD

I/O option.

v I/O object: recordName

v I/O option: DELETE

v PSB: psbName

v Database identifier:

databaseName | pcbNumber

Use the delete statement. The following

is an example:

delete recordName

 [usingPCB pcbInfo] ;

The migration tool includes the

usingPCB keyword if the VAGen

function specifies the Database

identifier as described for the ADD

I/O option.

v I/O object: recordName

v I/O option: REPLACE

v PSB: psbName

v Database identifier:

databaseName | pcbNumber

Use the replace statement. The

following is an example:

replace recordName

 [usingPCB pcbInfo] ;

The migration tool includes the

usingPCB keyword if the VAGen

function specifies the Database

identifier as described for the ADD

I/O option.

 Table 115. Functions - Segment Search Arguments for modified DL/I statements

VisualAge Generator 4.5 EGL produced by the migration tool Migration tool considerations

General information specified for

a modified DL/I call with SSAs:

v I/O option

v I/O object

v PSB

v Database identifier

v Scan update

v Scan parent

v Zero, one or more SSAs that

include:

– Segment Name

– Command Codes

– Boolean Operator

– Segment Field

– Relational Operator

– Comparison Value Item

Note:

v SSAs are entered in a

specialized DL/I Call Editor.

v VisualAge Generator formats

the SSAs at generation time.

General format for a modified DL/I

call with SSAs is that SSAs are entered

between curly braces as follows:

with #dli

 { dliFunction

 SSAList } ;

For example:

 ioOptionWithModifiers

 recordNameList

 [usingPCB pcbInfo]

 with #dli

 { dliFunction

 segmentName1*cmdCodes

 (segmentFieldA

 relationalOperatorA

 :comparisonValueItemA

 booleanOperator

 segmentFieldB

 relationalOperatorB

 :comparisonValueItemB)

 segmentName2*cmdCodes

 (segmentFieldC

 relationalOperatorC

 :comparisonValueItemC)

 };

Note:

v SSAs are entered in a text editor.

v EGL formats the SSAs at generation

time according to the DL/I

formatting rules.

The migration tool builds the

recordNameList based on a

combination of the I/O object and the

command codes specified for the SSAs.

Appendix B. Relationship of VisualAge Generator and EGL Language Elements 289

Table 115. Functions - Segment Search Arguments for modified DL/I statements (continued)

VisualAge Generator 4.5 EGL produced by the migration tool Migration tool considerations

Modified DL/I call with all SSAs

deleted.

Note: This technique is used in

scanning all segments in the

database.

General format for a modified DL/I

call with all SSAs deleted:

ioOptionWithModifiers

 recordNameList

 [usingPCB pcbInfo]

 with #dli{ dliFunction };

The migration tool sets the

recordNameList to the name of the

I/O object.

VisualAge Generator I/O options:

v ADD

v SCAN

v SCAN - Scan update

v SCAN - Scan parent

v SCAN - Scan update and Scan

parent

v INQUIRY

v UPDATE

v DELETE

v REPLACE

Corresponding EGL

ioOptionWithModifiers:

v add

v get next

v get next forUpdate

v get next inParent

v get next inParent forUpdate

v get

v get forUpdate

v delete

v replace

No special considerations. The

ioOptionWithModifiers are the same

values that are used when converting

unmodified DL/I I/O options.

VisualAge Generator I/O options:

v ADD

v SCAN

v SCAN - Scan update

v SCAN - Scan parent

v SCAN - Scan update and Scan

parent

v INQUIRY

v UPDATE

v DELETE

v REPLACE

Corresponding EGL dliFunction:

v ISRT

v GN

v GHN

v GNP

v GHNP

v GU

v GHU

v DLET

v REPL

Note: The dliFunction must be

consistent with the

ioOptionWithModifiers.

No special considerations.

VisualAge Generator I/O option,

SSAs, and Command Codes

Note:

v Command codes are optional.

There is a maximum of 4

command codes for an SSA.

v VisualAge Generator does

special processing at generation

and runtime to support the D

and N command codes that are

related to path calls.

EGL I/O option, recordNameList, SSAs

and Command Codes

Note:

v The * is only specified if one or

more optional command codes are

specified. There is a maximum of 4

command codes for an SSA.

v The EGL recordNameList varies

based on the I/O option and the

command codes specified for the

SSAs. See the next rows of this table

for details.

The migration tool builds the

recordNameList based on a

combination of the I/O object and the

command codes specified for the SSAs.

VisualAge Generator I/O object

and Command Codes without the

D or N Command Codes

Note: Only the I/O object (target

DL/I segment) is retrieved or

updated in the database.

The EGL recordNameList is the name

of the target DL/I segment.

The migration tool sets the

recordNameList to the name of the

I/O object.

290 Rational Software Development Platform: VisualAge Generator to EGL Migration Guide

Table 115. Functions - Segment Search Arguments for modified DL/I statements (continued)

VisualAge Generator 4.5 EGL produced by the migration tool Migration tool considerations

VisualAge Generator ADD I/O

option with the D Command

Code

Note:

v The D command code indicates

the top segment of the

hierarchy that is to be inserted

into the database. All segments

after the D command code are

also inserted.

v Only one segment can specify

the D command code.

v The target segment never

specifies the D command code.

Use the add statement. All segments

that are to be inserted must be listed

as objects of the I/O statement. The

following is an example for specifying

a DL/I Insert call:

 add recordName1 ,

 recordName2 ,

 recordName3

 [usingPCB pcbInfo]

 with #dli{ ISRT

 recordName1*D

 recordName2

 recordName3

 } ;

The migration tool creates the

recordNameList for the I/O statement

to include the DL/I segment record

that specifies the D command code

and all subsequent DL/I segment

records in the hierarchy.

VisualAge Generator SCAN,

INQUIRY, and UPDATE I/O

options with the D Command

Code

Note:

v The D command code indicates

a segment of the hierarchy that

is to be retrieved from the

database. Each segment other

than the target segment that is

to be retrieved from the

database must specify the D

command code. The target

segment is always retrieved.

v Multiple SSAs can specify the D

command code.

v The target segment never

specifies the D command code.

Use the form of the get statement that

corresponds to the I/O option. All

segments that are to be retrieved from

the database must be listed as objects

of the I/O statement. The following is

an example for specifying a DL/I Get

Hold Next in Parent call:

get next inParent

 recordName1 ,

 recordName3

 forUpdate

 [usingPCB pcbInfo]

 with #dli{ GHNP

 recordName1*D

 recordName2

 recordName3

 } ;

The migration tool creates the

recordNameList for the I/O statement

to include each DL/I segment record

that specifies a D command code and

the target segment.

VisualAge Generator REPLACE

I/O option with the N Command

Code

Note:

v The N command code indicates

that a segment is not to be

replaced even though it was

retrieved for update with the D

command code on a previous

SCAN or UPDATE.

v Multiple segments can specify

the N command code.

v The target segment never

specifies the N command code.

Use replace statement. Only the target

segment is specified in the

recordNameList. The following is an

example for specifying a DL/I Replace

call:

replace recordName3

 [usingPCB pcbInfo]

 with #dli{ REPL

 recordName1*N

 recordName3

 } ;

The migration tool sets the

recordNameList to the name of the

I/O object.

Appendix B. Relationship of VisualAge Generator and EGL Language Elements 291

Table 115. Functions - Segment Search Arguments for modified DL/I statements (continued)

VisualAge Generator 4.5 EGL produced by the migration tool Migration tool considerations

VisualAge Generator Relational

Operators for SSAs:

v EQ and =

v GT and >

v LT and <

v GE and >= and =>

v LE and <= and =<

v NE and ^= and =^

Corresponding EGL relational

operators for SSAs:

v =

v >

v <

v >=

v <=

v !=

Note:

v EGL only supports one variant of

the relational operators for SSAs.

v EGL converts != to a not equal

operator that is acceptable to DL/I.

No special considerations.

VisualAge Generator Boolean

Operators for SSAs:

v AND and &

v OR and |

Note: VisualAge Generator does

not provide support for the

dependent OR.

Corresponding EGL Boolean operators

for SSAs:

v &

v | (vertical bar)

Note:

v EGL only supports one variant of

the Boolean operators for SSAs.

v EGL also supports the dependent

OR (# symbol).

No special considerations.

Comparison Value Item

Note:

v The comparison value item can

be any item in the program.

v If the item is not qualified,

VisualAge Generator looks first

for the item in the segment

record associated with the

current SSA.

Comparison value item

Note:

v The comparison value item can be a

literal or any item in the program.

v If the item is not qualified, EGL

looks first in the target segment,

which is the lowest segment in the

hierarchy.

v The comparison value item must be

preceded by a semicolon to indicate

a host variable. For example:

 :qualifier.itemName

EGL removes the semicolon during

generation.

If a comparison value item is not

qualified, the migration tool checks the

DL/I segment record associated with

the current SSA to determine if the

item is in that record. If so, the

migration tool includes the DL/I

segment record as the qualifier for the

comparison value item.

Special considerations apply if the

DL/I segment record is not available

or if the comparison value item is not

in the record. For details and potential

problems, see “DL/I I/O and

comparison value items” on page 96.

Statements

The statements section is organized into the following tables:

v General rules - data item qualification and numeric literals, Table 116 on page

293

v Function invocation, Table 117 on page 293

v Assignment, MOVE, and MOVEA, Table 118 on page 294

v SET, Table 119 on page 295

v RETRIEVE and FIND, Table 120 on page 297

292 Rational Software Development Platform: VisualAge Generator to EGL Migration Guide

v IF, WHILE, and TEST, including EZEAID, EZESYS, and I/O error values,

Table 121 on page 298

v CALL, Table 122 on page 303

v DXFR, Table 123 on page 303

v XFER, Table 124 on page 304

 Table 116. Statements - General rules - data item qualification and numeric literals

VisualAge Generator 4.5 EGL produced by the migration tool Migration tool considerations

Item qualification rules: If an item is

not qualified, VisualAge Generator

looks for the item in the following

order:

v Items in the function’s local

storage or parameter list.

v The function’s I/O object and

records in the function’s local

storage or parameter list. If the

item name is not unique in this

category, the item name must be

qualified.

v Records, maps, and tables in the

program’s primary working

storage record, called parameter

list, table and additional records

list, and all I/O objects. If the

item name is not unique in this

category, the item name must be

qualified.

v If the item name is not found

within the program and the

program allows implicit items,

VisualAge Generator creates a

data item definition based on the

use of the item.

Item qualification rules: If an item is

not qualified, EGL looks for the item in

the following order:

v Items in the function’s local storage

or parameter list.

v The records and forms used in the

function’s I/O statements and

records in the function’s local storage

or parameter list. If the item name is

not unique in this category, the item

name must be qualified.

v Records, forms, and dataTables in the

program’s data declarations, use

declarations, and parameter list. If

the item name is not unique in this

category, the item name must be

qualified.

v EGL does not permit implicit items.

Every item must be explicitly

defined.

See “Level 77 items in records” on

page 67 and “Implicit data items in

programs” on page 84 for details

and potential problems.

Numeric literals:

v Not enclosed in quotes.

v Can use either a period (.) or a

comma (,) as the decimal point,

depending on the national

language.

Numeric literals:

v Not enclosed in quotes.

v Must use the period as the decimal

point. At generation time, the

decimalSymbol build descriptor

option determines whether the

period or comma is used as the

decimal point in the generated Java

or COBOL code.

The migration tool converts the

commas used as decimal points to a

period except for initial values of

form variable fields.

 Table 117. Statements — Function invocation

VisualAge Generator4.5 EGL produced by the migration tool Migration tool considerations

VAGen syntax example:

functionName([argumentList]);

EGL syntax example:

functionName([argumentList]);

See “EZE words” on page 305 for

the EGL equivalent system library

functions.

See Table 109 on page 279 for

function invocations from an I/O

error routine.

In flow statements:

functionName();

Flow statements are not supported.

goto functionName;

No special considerations.

Appendix B. Relationship of VisualAge Generator and EGL Language Elements 293

Table 118. Statements — Assignment, MOVE, and MOVEA

VisualAge Generator 4.5 EGL produced by the migration tool Migration tool considerations

VAGen syntax example:

target = functionName

 ([argumentList]) ;

EGL syntax example:

target = functionName

 ([argumentList]) ;

See “EZE words” on page 305 for

the EGL equivalent system library

functions.

target = numericExpression;

or

target = numericExpression (R;

target = numericExpression ;

or

target = mathLib.round

 (numericExpression) ;

If the (R option is specified, the

migration tool converts the option

to the EGL round system function.

target = source;

or

MOVE source [TO] target;

Note:

v The target can be a record, map,

data item, or certain EZE data

words.

v The source can be a record, map,

literal, data item, or certain EZE

data words.

v If the target is a record or map,

the source must also be a record

or map. A move corresponding

occurs.

target = source ;

or

move source to target byName ;

or

move source to target ;

Note:

v For assignment statements:

– The target can be a record, item, or

certain system variables. If the

target is a record, the source must

also be a record; the source is

moved to the target on a

byte-by-byte basis.

– The source can be a record, literal,

item, or certain system variables.

– Forms cannot be used in

assignment statements.

– Move corresponding is never done

for an assignment statement.

v For move statements:

– The target and source can be the

same as in VisualAge Generator

assignment or MOVE statements.

– If byName is specified, EGL does a

move corresponding.

– If no modifier is specified, the

move is either an item to item

move or a move corresponding

depending on the part type of the

source.

The data conversion and truncation

rules are the same as in VisualAge

Generator.

The migration tool considers the

following EGL rules when

migrating assignment and move

statements:

v EGL prefers that the assignment

statement be used for

item-to-item moves.

v The move byName statement is

required for moves involving

records or forms to preserve the

VAGen move corresponding

behavior.

v Move without a modifier is

tolerated and treated as an

item-to-item move or a move

corresponding depending on the

part type of the source.

Therefore, the migration tool does

the following:

v Converts to an assignment

statement for any of the

following:

– The source or target is an EZE

data word (for example:

EZEAPP).

– The source is a literal.

– The source or target is a

qualified or subscripted item.

– The source or target is an item

in the function’s parameter list

or local storage.

v Converts to a move byName if

the source or target is the

function’s I/O object or a record

in the function’s parameter list or

local storage.

v Converts to a move without a

modifier in all other situations.

See “Assignment statements” on

page 98 for details and potential

problems.

294 Rational Software Development Platform: VisualAge Generator to EGL Migration Guide

Table 118. Statements — Assignment, MOVE, and MOVEA (continued)

VisualAge Generator 4.5 EGL produced by the migration tool Migration tool considerations

MOVEA source [TO] target;

or

MOVEA source [TO] target

 FOR occurrence;

Note: The source can be an array or

a scalar.

move source to target for all ;

or

move source to target

 for occurrence ;

The migration tool converts the

MOVEA statement to a move

statement with the for modifier. The

tool also does the following:

v Includes the for all option if the

FOR occurrence option was not

specified in VisualAge Generator.

v Includes the for occurrence option

if the FOR occurrence option was

specified in VisualAge Generator.

v Sets the target subscript to 1 if

the subscript was not previously

specified.

v Does not set the subscript to 1 for

the source because the source can

be an array or a scalar item.

 Table 119. Statements — SET

VisualAge Generator 4.5 EGL produced by the migration tool Migration tool considerations

General information:

v Commas or blanks can be used to

separate multiple options on a

single SET statement.

General information:

v Commas are required to separate

multiple options on a single set

statement.

No special considerations.

SET record SCAN;

OR

SET record EMPTY;

Note: SET record EMPTY does not

affect level 77 items.

set record position;

OR

set record empty;

The migration tool does not add a

statement for the level 77 record.

SET sqlItem NULL;

Note: sqlItem can be an item in an

SQL row record or an SQLITEM

parameter for a function.

set sqlItem null;

Note: sqlItem can be an isNullable=yes

item in an SQL row record or a nullable

parameter for a function.

No special considerations.

SET map [ALARM |

 [CLEAR | EMPTY]] ;

Note:

v CLEAR and EMPTY are mutually

exclusive.

v ALARM and either CLEAR or

EMPTY can be combined with the

PAGE option.

set form [alarm |

 [initial | empty]] ;

Note:

v Initial and empty are mutually

exclusive.

v The replacement for the PAGE option

cannot be combined with any other

options.

If ALARM, CLEAR, or EMPTY are

used in combination with the PAGE

option, the migration tool splits the

VAGen statement into two EGL

statements.

Appendix B. Relationship of VisualAge Generator and EGL Language Elements 295

Table 119. Statements — SET (continued)

VisualAge Generator 4.5 EGL produced by the migration tool Migration tool considerations

SET map PAGE ;

Note: PAGE can be combined with

ALARM and with either CLEAR or

EMPTY.

converseLib.clearScreen();

 // display form

or

converseLib.pageEject();

 // printer form

Note: The replacement for the PAGE

option cannot be combined with any

other options.

The migration tool migrates SET

map PAGE as follows:

v If SET map PAGE is used in

combination with any other

options, the migration tool splits

the VAGen statement into two

EGL statements.

v If the map is a display map, the

migration tool converts the

statement to

converseLib.clearScreen();

v If the map is a printer map, the

tool converts the statement to

converseLib.pageEject();

v If the map is not available to

determine the map type, the

migration tool converts the

statement to

converseLib.EZE_SETPAGE();

See “SET map PAGE statement” on

page 100 for details and potential

problems.

SET mapItem

 [CURSOR | FULL |

 [NORMAL | DEFINED]] ;

Note:

v mapItem can be a field on a map

or a MAPITEM parameter for a

function.

v NORMAL and DEFINED are

mutually exclusive.

v CURSOR and FULL can be

combined with either NORMAL

or DEFINED.

v VisualAge Generator tolerates

setting CURSOR, FULL,

NORMAL, and DEFINED for

print maps, but they had no effect

on the printed output.

set formField

 [cursor | full |

 [normal | initialAttributes]] ;

Note:

v formField can be a variable field on a

form or a field parameter for a

function.

v normal and initialAttributes are

mutually exclusive.

v cursor and full can be combined with

either normal or initialAttributes.

v EGL does not support setting cursor,

full, normal, or initialAttributes for

print forms.

The migration tool migrates to the

EGL equivalent of each option

without regard to whether the

formField is on a text or print form.

See “SET mapItem attributes” on

page 101 for details and potential

problems.

296 Rational Software Development Platform: VisualAge Generator to EGL Migration Guide

Table 119. Statements — SET (continued)

VisualAge Generator 4.5 EGL produced by the migration tool Migration tool considerations

SET mapItem

 [CURSOR | FULL |

 color | extendedHighlight |

 MODIFIED |

 [BRIGHT | DARK] |

 [PROTECT | AUTOSKIP]] ;

Note:

v mapItem can be a field on a map

or a MAPITEM parameter for a

function.

v BRIGHT and DARK are mutually

exclusive.

v PROTECT and AUTOSKIP are

mutually exclusive.

v Any of the other options can be

combined.

v VisualAge Generator tolerates

setting these attributes for print

maps. However, only the

extended highlighting option of

USCORE has any effect on the

printed output.

set formField

 [cursor | full |

 color | extendedHighlight |

 modified |

 [bold | invisible] |

 [protect | skip]] ;

Note:

v formField can be a variable field on a

form or a field parameter for a

function.

v Bold and invisible are mutually

exclusive.

v Protect and skip are mutually

exclusive.

v Any of the other options can be

combined.

v Except for the extended highlighting

option of underline, EGL does not

support setting these attributes for

print forms.

The migration tool migrates to the

EGL equivalent of each option

without regard to whether the

formField is on a text or print form.

See “SET mapItem attributes” on

page 101 for details and potential

problems. See later rows in this

table for color and extendedHighlight

information.

color: MONO |

 BLUE |

 GREEN |

 PINK |

 RED |

 TURQ |

 YELLOW |

 WHITE

color: defaultColor |

 blue |

 green |

 magenta |

 red |

 cyan |

 yellow |

 white

No special considerations.

extendedHighlight:

 NOHILITE |

 BLINK |

 RVIDEO |

 USCORE

extendedHighlight:

 noHighLight |

 blink |

 reverse |

 underline

No special considerations.

 Table 120. Statements — RETRIEVE and FIND

VisualAge Generator 4.5 EGL produced by the migration tool Migration tool

considerations

RETR dataItem1

 table[.searchColumn]

 dataItem2

 [returnColumn] ;

Note:

v If the searchColumn is not

specified, the default is the first

column in the table.

v If the returnColumn is not

specified, the default is the

second column in the table.

if (dataItem1 in

 dataTable.searchColumn)

 dataItem2 =

 dataTable.returnColumn[sysVar.arrayIndex];

end

Note: The searchColumn and returnColumn are

required.

The migration tool converts

the RETR statement to an if

statement and an

assignment statement.

Special considerations apply

if the table is not available

during migration. See

“RETR statement” on page

100 for details and potential

problems.

Appendix B. Relationship of VisualAge Generator and EGL Language Elements 297

Table 120. Statements — RETRIEVE and FIND (continued)

VisualAge Generator 4.5 EGL produced by the migration tool Migration tool

considerations

FIND dataItem

 table[.searchColumn]

 trueStatement;

OR

FIND dataItem

 table[.searchColumn]

 , falseStatement ;

OR

FIND dataItem

 table[.searchColumn]

 trueStatement

 [,] falseStatement ;

Note:

v If the searchColumn is not

specified, the default is the first

column in the table.

v If FIND is used in program flow,

the trueStatement and the

falseStatement can be the name of

a main function or EZECLOS.

v If FIND is used in a function, the

trueStatement and the

falseStatement can be the name of

any function, EZECLOS,

EZEFLO, or EZERTN.

if (dataItem in dataTable.searchColumn)

 EGLtrueStatement ;

end

OR

if (dataItem in dataTable.searchColumn)

else

 EGLfalseStatement ;

end

OR

if (dataItem in dataTable.searchColumn)

 EGLtrueStatement ;

else

 EGLfalseStatement ;

end

Note: The searchColumn is required.

The migration tool converts

the FIND statement to an if

statement and the EGL

equivalent of the true and

false statements. See later

rows in this table for

conversion of the

trueStatement and

falseStatement to the

corresponding EGL

statements.

true/falseStatement in flow:

v functionName() (main only)

v EZECLOS

Corresponding EGL replacements:

v goto functionName;

v exit program;

No special considerations.

true/falseStatement in a function:

v functionName (any function)

v EZECLOS

v EZEFLO

v EZERTN

Corresponding EGL replacements:

v functionName();

v exit program;

v exit stack;

v return;

No special considerations.

 Table 121. Statements — IF, WHILE, and TEST, including EZEAID, EZESYS, and I/O error values

VisualAge Generator 4.5 EGL produced by the migration tool Migration tool considerations

IF logicalExpression ;

 { statement ; }

[ELSE;

 { statement ; }]

END;

if (EGLLogicalExpression)

 { EGLStatement ; }

[else

 { EGLStatement ; }]

end

See later rows in this table for the

relationship between the VAGen

logical expressions and the EGL

logical expressions.

WHILE logicalExpression ;

 { statement ; }

END;

while (EGLLogicalExpression)

 { EGLStatement ; }

end

See later rows in this table for the

relationship between the VAGen

logical expressions and the EGL

logical expressions.

298 Rational Software Development Platform: VisualAge Generator to EGL Migration Guide

Table 121. Statements — IF, WHILE, and TEST, including EZEAID, EZESYS, and I/O error values (continued)

VisualAge Generator 4.5 EGL produced by the migration tool Migration tool considerations

TEST testCondition

 trueStatement ;

TEST testCondition

 , falseStatement ;

TEST testCondition

 trueStatement

 [,] falseStatement ;

Note:

v The TEST statement is similar to

an IF ... IS statement. The

exception to this is TEST mapItem

nnn, +nnn, and -nnn, which does

not have an IF statement

equivalent.

v If TEST is used in program flow,

the trueStatement and the

falseStatement can be the name of

a main function or EZECLOS.

v If TEST is used in a function, the

trueStatement and the

falseStatement can be the name of

any function, EZECLOS, EZEFLO,

or EZERTN.

if (EGLLogicalExpression)

 EGLtrueStatement ;

end

if (EGLLogicalExpression)

else

 EGLfalseStatement ;

end

if (EGLLogicalExpression)

 EGLtrueStatement ;

else

 EGLfalseStatement ;

end

With the exception of TEST

mapItem nnn, +nnn, and -nnn, the

migration tool converts the TEST

statement to the equivalent if ... is

statement and the EGL equivalent

of the true and false statements.

See later rows in this table for the

relationship between the VAGen

logical expressions and the EGL

logical expressions.

See later rows in this table for

conversion of the trueStatement and

falseStatement to the corresponding

EGL statements.

VisualAge Generator boolean

operators for IF and WHILE:

v AND

v OR

Corresponding EGL boolean operators

for if and while:

v &&

v ||

No special considerations.

VisualAge Generator relational

operators for IF and WHILE:

v EQ and =

v NE and ^=

v LE and <= and =<

v LT and <

v GE and >= and =>

v GT and >

Corresponding EGL relational operators

for if and while:

v ==

v !=

v <=

v <

v >=

v >

No special considerations.

VisualAge Generator state operators

for IF and WHILE:

v IS

v NOT

Corresponding EGL state operators for if

and while:

v is

v not

The migration tool always migrates

a VAGen TEST statement to an

EGL if ... is statement.

VisualAge Generator array operator

for IF and WHILE:

v IN

Corresponding EGL state operators for if

and while:

v in

Special considerations apply. See

“Checking for IN literal or scalar”

on page 102.

Appendix B. Relationship of VisualAge Generator and EGL Language Elements 299

Table 121. Statements — IF, WHILE, and TEST, including EZEAID, EZESYS, and I/O error values (continued)

VisualAge Generator 4.5 EGL produced by the migration tool Migration tool considerations

VisualAge Generator mapItem state

conditions:

v BLANK or BLANKS

v CURSOR

v DATA

v MODIFIED

v NULL or NULLS

v NUMERIC

Corresponding EGL formField state

conditions:

v blanks

v cursor

v data

v modified

v blanks

v numeric

The migration tool converts to the

equivalent EGL state conditions.

Special considerations apply to

mapItem NULL. See “Checking SQL

and map items for NULL” on page

103 for details and potential

problems.

Special mapItem state condition for

the TEST statement: nnn | +nnn |

-nnn

Note: This compares the length of

the data the user entered to nnn.

The test is =, >, or < corresponding

to nnn, +nnn, or -nnn.

EGL does not provide direct support for

this state condition. However, you can

achieve the equivalent function by

doing the following:

v Use the system library function

converseLib.fieldInputLength, which

returns the length of the data entered

by the user.

v Use an if statement to compare the

resulting length for == , >, or <

corresponding to nnn, +nnn, or -nnn,

respectively.

When migrating any program, the

migration tool always includes a

declaration for:

<custPrefix>EZE_ITEMLEN

The migration tool does the

following for TEST nnn, +nnn, or

-nnn:

v Adds an extra statement just

before the TEST statement to set

<custPrefix>EZE_ITEMLEN

using the system library function

converseLib.fieldInputLength(item).

v Changes the TEST statement to

an if statement and compares

 <custPrefix>EZE_ITEMLEN

to == nnn, > nnn, or < nnn.

VisualAge Generator map state

conditions:

v MODIFIED

Corresponding EGL form state

conditions:

v modified

No special considerations.

VisualAge Generator EZEAID state

conditions:

v ENTER

v BYPASS

v PAn, where n = 1, 2, 3

v PFn, where n is 1 to 24

v PA

v PF

Corresponding EGL converseVar.eventKey

state conditions:

v enter

v bypass

v pan, where n = 1, 2, 3

v pfn, where n is 1 to 24

v pakey

v pfkey

No special considerations.

VisualAge Generator sqlItem state

conditions:

v BLANK or BLANKS

v NULL

v NUMERIC

v TRUNC

Corresponding EGL sqlItem state

conditions:

v blanks

v null

v numeric

v trunc

The migration tool converts to the

equivalent EGL state conditions.

Special considerations apply to

sqlItem NULL. See “Checking SQL

and map items for NULL” on page

103 for details and potential

problems.

300 Rational Software Development Platform: VisualAge Generator to EGL Migration Guide

Table 121. Statements — IF, WHILE, and TEST, including EZEAID, EZESYS, and I/O error values (continued)

VisualAge Generator 4.5 EGL produced by the migration tool Migration tool considerations

VisualAge Generator record state

conditions:

v DED

v DUP

v EOF

v ERR

v FMT

v FNA

v FNF

v FUL

v HRD

v LOK

v NRF

v UNQ

Note:

v DUP is supported for both SQL

and non-SQL records.

v For SQL records, DUP and UNQ

are equivalent and are always

hard errors.

v For non-SQL records, DUP and

UNQ are not equivalent; both are

soft errors.

v LOK is only supported on

OS/400 and is a soft error.

Corresponding EGL record state

conditions:

v deadLock

v duplicate or unique

v endOfFile

v ioError

v invalidFormat

v fileNotAvailable

v fileNotFound

v full

v hardIOError

v deadLock

v noRecordFound

v unique

Note:

v duplicate is only supported for

non-SQL records and is a soft error.

v unique is a hard error for both SQL

and non-SQL records.

v LOK is converted to deadLock, which

is always a hard error.

The migration tool converts to the

equivalent EGL state conditions.

Special considerations apply to

migrating DUP based on the record

type. See “I/O error values UNQ

and DUP” on page 104 for details

and potential problems.

Special considerations also apply to

migrating LOK. See “I/O error

value LOK” on page 106 for details

and potential problems.

UI record state conditions:

v MODIFIED

Corresponding EGL VGUI record

conditions:

v modified

No special considerations.

VisualAge Generator dataItem state

conditions:

v BLANK or BLANKS

v NUMERIC

Corresponding EGL dataItem state

conditions:

v blanks

v numeric

No special considerations.

Appendix B. Relationship of VisualAge Generator and EGL Language Elements 301

Table 121. Statements — IF, WHILE, and TEST, including EZEAID, EZESYS, and I/O error values (continued)

VisualAge Generator 4.5 EGL produced by the migration tool Migration tool considerations

VisualAge Generator EZESYS state

conditions:

v AIX

v AIXCICS

v HP

v IMSBMP

v IMSVS

v MVSBATCH

v MVSCICS

v NTCICS

v OS2

v OS2CICS

v OS2GUI

v OS400

v SCO

v SOLACICS

v SOLARIS

v TSO

v VMCMS

v VMBATCH

v VSEBATCH

v VSECICS

v WINGUI

v WINNT

v ITF

Corresponding sysVar.systemType state

conditions:

v aix

v AIXCICS

v hpux

v imsbmp

v imsvs

v zosbatch

v zoscics

v NTCICS

v OS2

v OS2CICS

v OS2GUI

v iseriesc

v SCO

v SOLACICS

v solaris

v TSO

v VMCMS

v VMBATCH

v vsebatch

v vsecics

v WINGUI

v win

v debug

The migration tool converts to the

equivalent EGL state conditions.

Special considerations apply to

checking the state for EZESYS. See

“EZESYS” on page 108 for details

and potential problems.

Note: Not all of the VAGen

runtime environments are

supported. However, the migration

tool always converts to an

equivalent value, even if it will not

be valid in EGL. There will be an

error in the Problems view if the

old VAGen value is not supported.

true/falseStatement in flow:

v functionName() (main only)

v EZECLOS

Corresponding EGL replacements:

v goto functionName ;

v exit program;

No special considerations.

true/falseStatement in a function:

v functionName (any function)

v EZECLOS

v EZEFLO

v EZERTN

Corresponding EGL replacements:

v functionName();

v exit program;

v exit stack;

v return;

No special considerations.

302 Rational Software Development Platform: VisualAge Generator to EGL Migration Guide

Table 122. Statements — CALL

VisualAge Generator 4.5 EGL produced by the migration tool Migration tool considerations

CALL programName argument

 [{ [,] argument}]

 [(options] ;

OR

CALL serviceRoutine argument

 [{ [,] argument}]

 [(options] ;

Note: Commas to separate the

arguments are optional.

call programName argument

 [{ , argument }]

 [options] ;

Note:

v Commas to separate the arguments

are required.

v The programName cannot be a

reserved word. If the program is a

non-EGL program, use a linkage table

entry to specify the real name.

See later rows in this table for

conversion of the options to the

corresponding EGL statements or

options.

See “Service Routines” on page 313

for information on migrating the

CALL statement for them.

REPLY option If the REPLY option is specified in

VisualAge Generator, the corresponding

EGL statements are as follows:

try

 call programName argument

 [{ , argument }]

 [otherOptions] ;

end

The migration tool includes the

try...end block if the REPLY option is

specified.

otherOptions:

v NOMAPS

v NONCSP

Corresponding EGL otherOptions:

v noRefresh

v externallyDefined

No special considerations.

 Table 123. Statements — DXFR

VisualAge Generator 4.5 EGL produced by the migration tool Migration tool considerations

DXFR target

 [recordName]

 [(NONCSP] ;

where target is

programName

OR

EZEAPP

Note:

v Any record can be passed.

v If a working storage record is

passed, any level 77 items are not

included.

transfer to program target

 [passing recordName]

 [externallyDefined] ;

where target is

programName

OR

sysVar.transferName

Note: Any record can be passed.

No special considerations.

Appendix B. Relationship of VisualAge Generator and EGL Language Elements 303

Table 124. Statements — XFER

VisualAge Generator 4.5 EGL produced by the migration tool Migration tool considerations

Variation 1 - Migrate to Transfer

(no map or UI record)

XFER target

 [recordName]

 [(NONCSP] ;

where target is

transactionName

OR

EZEAPP

Note:

v This format of XFER does not

include a map or UI record.

v Any record can be passed. If a

working storage record is passed,

any level 77 items are not

included.

v transactionName is the program

name in nontransactional runtime

environments.

EGL syntax for transfer statement:

transfer to transaction target

 [passing recordName]

 [externallyDefined] ;

where target is

transactionName

OR

sysVar.transferName

Note:

v Any record can be passed.

v transactionName is the program name

in nontransactional runtime

environments.

If there is no comma in the

statement, the migration tool

converts the XFER to an EGL

transfer to transaction statement.

Variation 2 - Migrate to Show

(XFER with a map or XFER with a

UI record)

XFER target

 [recordName]

 , mapName

 [(NONCSP] ;

 OR

XFER target

 [recordName]

 , UIRecordName ;

where target is

v transactionName

v EZEAPP

v ’ ’ for XFER with a UI record

Note:

v Any record can be passed. If a

working storage record is passed,

any level 77 items are not

included.

v transactionName is the program

name in nontransactional target

environments.

v (NONCSP is only supported for

XFER with a map.

EGL syntax for show statement varies

depending on whether a form or a

VGUI record is used.

show formName

 returning to target

 [passing recordName]

 [externallyDefined] ;

 OR

show UIRecordName

 [returning to target]

 [passing recordName] ;

where target is

v transactionName

v sysVar.transferName

Note:

v Any record can be passed.

v transactionName is the program

name in nontransactional target

environments.

v For show with a VGUI record, if the

target is ’ ’, the returning to target

clause is omitted.

If there is a comma in the

statement, the migration tool

converts the XFER statement to an

EGL show statement.

304 Rational Software Development Platform: VisualAge Generator to EGL Migration Guide

EZE words

Program flow EZE words

The left table column shows the VisualAge Generator 4.5 EZE word. The right

column shows what the migration tool converts the EZE word to in EGL.

 Table 125. Program flow EZE words

EZE word in VisualAge Generator 4.5 EGL

EZECLOS This depends on the location:

v If used as an I/O error routine, the

migration tool converts EZECLOS to the

following, within the try...end block:

onException exit program;

v Used anywhere else, including use as the

true or false operand of a TEST or FIND, the

migration tool converts EZECLOS to the

following:

exit program;

Note: The exit program has a default return

code of sysVar.returnCode, which is the

equivalent of EZERCODE. This default

provides the same capability as VisualAge

Generator.

EZEFLO

Note: EZEFLO cannot be used in flow

statements.

This depends on the location:

v If used as an I/O error routine, the

migration tool converts EZEFLO to the

following, within the try...end block:

onException exit stack;

v Used anywhere else, including use as the

true or false operand of a TEST or FIND, the

migration tool converts EZEFLO to the

following:

exit stack;

EZERTN or EZERTN(return value)

Note:

v EZERTN cannot be used in flow

statements.

v EZERTN(return value) cannot be used

as an I/O error routine.

EZERTN — This depends on the location:

v If used as an I/O error routine, the

migration tool includes the try...end block

but omits the onException statement.

v Used anywhere else, the migration tool

converts EZERTN to the following:

return;

OR

return(returnValue);

Note: If the returnValue is EZESYS, see

EZESYS for additional considerations.

SQL EZE words

The left table column shows the VisualAge Generator 4.5 EZE word. The right

column shows what the migration tool converts the EZE word to in EGL.

Appendix B. Relationship of VisualAge Generator and EGL Language Elements 305

Table 126. SQL EZE words

EZE word in VisualAge Generator 4.5 EGL definition

EZECONCT VGLib.connectionService

The arguments are the same as in VAGen.

However, for debug and Java generation, not all

of the values for the unit of work argument are

supported. JDBC only supports single-phase

commit.

EZESQCOD sysVar.sqlcode

EZESQISL

Note:

v For VisualAge Generator 4.5,

EZESQISL is supported for use with

ODBC.

v Otherwise, EZESQISL is not supported

or is ignored in VisualAge Generator

for all environments, but it has been

kept for compatablity.

VGVar.sqlIsolationLevel

Note: EGL supports VGVar.sqlIsolationLevel for

the following:

v connectionService regardless of whether

VAGen Compatibility mode is selected

v connect only when VAGen Compatibility

mode is selected

EZESQLCA sysVar.sqlca

Note: sysVar.sqlca is only partially supported

in EGL. For debug and Java generation, EGL

does not set the fields within sysVar.sqlca that

contain the values for VGVar.sqlerrmc and

VGVar.sqlwarn[7].

EZESQRD3 VGVar.sqlerrd[3]

Note: The migration tool changes this to an

array reference.

EZESQRRM VGVar.sqlerrmc

Note: sqlerrmc is not supported for debug or

Java generation.

EZESQWN1 VGVar.sqlwarn[2]

Note: The migration tool changes this to an

array reference.

EZESQWN6 VGVar.sqlwarn[7]

Note: The migration tool changes this to an

array reference. sqlwarn[7] is not supported for

debug or Java generation.

N/A SysVar.sqlState

Note: This is new for EGL and has no

equivalent in VisualAge Generator 4.5. The

migration tool does not convert anything to

this.

DL/I EZE words

The left table column shows the VisualAge Generator 4.5 EZE word. The right

column shows what the migration tool converts the EZE word to in EGL.

 Table 127. DL/I EZE words

EZE word in VisualAge Generator 4.5 EGL

EZEDLCER dliVar.cicsError

EZEDLCON dliVar.cicsCondition

306 Rational Software Development Platform: VisualAge Generator to EGL Migration Guide

Table 127. DL/I EZE words (continued)

EZE word in VisualAge Generator 4.5 EGL

EZEDLDBD dliVar.dbName

EZEDLERR dliVar.handleHardDLIErrors

EZEDLKEY dliVar.keyArea[1:dliVar.keyAreaLen]

EZEDLKYL dliVar.keyAreaLen

EZEDLLEV dliVar.segmentLevel

EZEDLPCB

Note: This is an array; default subscript is

1.

The migration tool always sets the variable

that declares the program’s PSB to psb.

Therefore, in statements, EZEDLPCB[n]

converts as follows:

v EZEDLPCB[0] converts to psb.iopcb.

v EZEDLPCB converts to psb.pcb1, because 1

is the default subscript.

v EZEDLPCB[n], where n is a numeric literal

converts to psb.pcbn.

In a program’s called parameter list, special

considerations apply. For details, see Table 103

on page 269.

EZEDLPRO dliVar.procOptions

EZEDLPSB In statements except the CALL statement,

EZEDLPSB converts to:
dliLib.psbData.psbName

In the CALL statement, EZEDLPSB converts to:
dliLib.psbData

In a program’s called parameter list, special

considerations apply. For details, see Table 103

on page 269.

EZEDLRST dliVar.cicsRestart

EZEDLSEG dliVar.segmentName

EZEDLSSG dliVar.numSensitiveSegs

EZEDLSTC dliVar.statusCode

EZEDLTRM

Note: EZEDLTRM is equivalent to

EZECNVCM. Both are converted to

converseVar.commitOnConverse.

converseVar.commitOnConverse

Date and time EZE words

The left table column shows the VisualAge Generator 4.5 EZE word. The right

column shows what the migration tool converts the EZE word to in EGL.

 Table 128. Date and time EZE words

EZE word in VisualAge Generator

4.5

EGL definition

EZEDAY VGVar.currentShortJulianDate

EZEDAYL VGVar.currentJulianDate

EZEDAYLC VGVar.currentFormattedJulianDate

Appendix B. Relationship of VisualAge Generator and EGL Language Elements 307

Table 128. Date and time EZE words (continued)

EZE word in VisualAge Generator

4.5

EGL definition

EZEDTE VGVar.currentShortGregorianDate

EZEDTEL VGVar.currentGregorianDate

EZEDTELC VGVar.currentFormattedGregorianDate

EZETIM VGVar.currentFormattedTime

Other data EZE words

The left table column shows the VisualAge Generator 4.5 EZE word. The right

column shows what the migration tool converts the EZE word to in EGL.

 Table 129. Other data EZE words

EZE word in VisualAge

Generator 4.5

EGL definition

EZEAID converseVar.eventKey

EZEAPP sysVar.transferName

EZECNVCM converseVar.commitOnConverse

EZECONVT sysVar.callConversionTable

record.EZEDEST record.resourceAssociation

Note: The qualification is still the record name.

EZEDESTP converseVar.printerAssociation

EZEFEC VGVar.handleHardIOErrors

EZELOC sysVar.remoteSystemID

EZELTERM sysVar.terminalID for a text program.

sysVar.conversationID for a VGWebTransaction program.

Note:

v In a text program, both sysVar.terminalID and

sysVar.conversationID provide the terminalID information.

v In a VGWebTransaction program, both sysVar.terminalID

and sysVar.conversationID provide the conversationID

information.

308 Rational Software Development Platform: VisualAge Generator to EGL Migration Guide

Table 129. Other data EZE words (continued)

EZE word in VisualAge

Generator 4.5

EGL definition

EZEMNO v If EZEMNO is used as the target of a MOVE or

assignment, the following occurs:

– If EZEMNO is set from a numeric literal other than

9999, EZEMNO becomes:

converseLib.validationFailed(numericLiteral);

– If EZEMNO is set from numeric literal 9999, EZEMNO

becomes:

converseLib.validationFailed();

– If EZEMNO is set from an item, EZEMNO becomes:

if (itemName == 9999)

 converseLib.validationFailed();

else

 converseLib.validationFailed(itemName);

end

v If EZEMNO is used anywhere else, it is replaced with:

converseVar.validationMsgNum

EZEMSG

Note: EZEMSG as a data

item exists only if it is

placed on a map. If it is

placed on multiple maps,

EZEMSG must be qualified.

<custPrefix>EZEMSG

Note:

v There is no dot between <custPrefix> and EZEMSG

v Where EZEMSG is used in functions, the migration tool

keeps the same qualifications for <custPrefix>EZEMSG

that were used by EZEMSG in those functions. For

example, xxxx.EZEMSG becomes

xxxx.<custPrefix>EZEMSG

v Where EZEMSG is used in maps, the migration tool does

the following:

– Changes the field name to <custPrefix>EZEMSG

– Sets the map msgField property to

<custPrefix>EZEMSG

EZEOVER VGVar.handleOverflow

EZEOVERS sysVar.overflowIndicator

EZERCODE

Note: VisualAge Generator

permitted, but did not

recommend, negative values

and values greater than 512

for EZERCODE.

sysVar.returnCode

Note: EGL does not permit negative values or values greater

than 512 for sysVar.returnCode.

EZEREPLY VGVar.handleSysLibraryErrors

EZERT2

Note: In VisualAge

Generator 4.5, EZERT2 is

used only as the condition

code for MQ Series access.

VGVar.mqConditionCode

Appendix B. Relationship of VisualAge Generator and EGL Language Elements 309

Table 129. Other data EZE words (continued)

EZE word in VisualAge

Generator 4.5

EGL definition

EZERT8

Note: EZERT8 is set for the

following:

v CALL statements if the

(REPLY option is

specified.

v EZE system function

invocations if EZEREPLY

is set to 1.

v I/O statements for serial,

indexed, relative, and

message queue records.

sysVar.errorCode

Note: sysVar.errorCode is set for the following:

v All CALL statements.

v All sysLib system function invocations.

v Some strLib, mathLib, and VGLib system function

invocations

v I/O statements for serial, indexed, relative, and message

queue records.

The value of sysVar.errorCode changes more frequently in

EGL than it did in VisualAge Generator.

EZESEGM converseVar.segmentedMode

EZESEGTR sysVar.transactionID

EZESYS To use the EGL values in an if or while statement, use:

sysVar.systemType

To get the old VAGen values for use in any other statement,

use:

myItem = VGLib.getVAGSysType();

and then use myItem in the statement.

If you need to use the old VAGen value in a migrated

VAGen program, use:

<custPrefix>EZESYS

where <custPrefix> is the Renaming Prefix you specified

during Stage 2 of migration. Based on the VAGen Migration

Preference Do not initialize old EZESYS values, the migration

tool includes or omits a data declaration for

<custPrefix>EZESYS and a statement to initialize it to the

old VAGen value.

See “EZESYS” on page 108 for details and potential

problems.

EZETST

Note: Set for IF...IN, and

MOVEA. EZETST is 2–byte

binary.

sysVar.arrayIndex

Note: arrayIndex is int (4–byte binary).

EZEUSR sysVar.sessionID

EZEUSRID sysVar.userID

General function EZE words

The left table column shows the VisualAge Generator 4.5 EZE word. The right

column shows what the migration tool converts the EZE word to in EGL. Except

where noted, the argument lists are the same in VisualAge Generator as they are in

EGL, so they are omitted from the table.

310 Rational Software Development Platform: VisualAge Generator to EGL Migration Guide

Table 130. General function EZE words

EZE word in VisualAge

Generator 4.5

EGL definition

result =

EZEBYTES(itemOrRecord)

Note: VisualAge Generator

documents that only items and

records can be used as

arguments for EZEBYTES.

However, VisualAge Generator

tolerates a map as the argument

for EZEBYTES.

result = sysLib.bytes(itemOrRecord)

Note: EGL does not support a form as the argument for

sysLib.bytes. The migration tool converts the argument

without regard to whether it is an item, record, or map.

EZECOMIT() sysLib.commit()

EZECONV(target,direction,

conversionTable)

sysLib.convert

EZEC10(xxx, yyy, zzz) sysLib.verifyChkDigitMod10

EZEC11(xxx, yyy, zzz) sysLib.verifyChkDigitMod11

EZEG10(xxx, yyy, zzz) sysLib.calculateChkDigitMod10

EZEG11(xxx, yyy, zzz) sysLib.calculateChkDigitMod11

EZEPURGE(queueName) sysLib.purge

EZEROLLB() sysLib.rollback()

EZEWAIT(variableName)

Note: variableName provides the

time in hundredths of a second.

sysLib.wait(variableName);

Note:

v variableName provides the time in seconds.

v The migration tool converts the time to seconds. See

“EZEWAIT” on page 110 for details and potential

problems.

String EZE words

The left table column shows the VisualAge Generator 4.5 EZE word. The right

column shows what the migration tool converts the EZE word to in EGL. The

argument lists are the same in VisualAge Generator as they are in EGL, so they are

omitted from the table.

 Table 131. String EZE words

EZE word in VisualAge Generator 4.5 EGL definition

EZESBLKT strLib.setBlankTerminator

EZESCCWS strLib.concatenateWithSeparator

EZESCMPR VGLib.compareBytes

EZESCNCT VGLib.concatenateBytes

EZESCOPY VGLib.copyBytes

EZESFIND strLib.findStr

EZESNULT strLib.setNullTerminator

EZESSET strLib.setSubStr

EZESTLEN strLib.strLen

EZESTOKN strLib.getNextToken

Appendix B. Relationship of VisualAge Generator and EGL Language Elements 311

Math EZE words

The left table column shows the VisualAge Generator 4.5 EZE word. The right

column shows what the migration tool converts the EZE word to in EGL. Except

where noted, the argument lists are the same in VisualAge Generator as they are in

EGL, so they are omitted from the table.

 Table 132. Math EZE words — General math functions

EZE word in VisualAge Generator 4.5 EGL definition

EZEABS mathLib.abs

EZECEIL mathLib.ceiling

EZEEXP mathLib.exp

EZEFLOOR mathLib.floor

EZEFREXP mathLib.frexp

EZELDEXP mathLib.ldexp

EZELOG mathLib.log

EZELOG10 mathLib.log10

EZEMAX mathLib.maximum

EZEMIN mathLib.minimum

EZEMODF mathLib.modf

EZENCMPR mathLib.compareNum

EZEPOW mathLib. pow

EZEPRSCN mathLib.precision

EZEROUND mathLib.round

Note: mathLib.round is also used to replace

VAGen statements with the (R option. The

assignment statement migration for those

statements has the following syntax:

 result =

 mathLib.round(numericExpression);

EZESQRT mathLib.sqrt

 Table 133. Math EZE words — Trigonometric math functions

EZE word in VisualAge Generator 4.5 EGL definition

EZEACOS mathLib.acos

EZEASIN mathLib.asin

EZEATAN mathLib.atan

EZEATAN2 mathLib.atan2

EZECOS mathLib.cos

EZECOSH mathLib.cosh

EZESIN mathLib.sin

EZESINH mathLib.sinh

EZETAN mathLib.tan

EZETANH mathLib.tanh

312 Rational Software Development Platform: VisualAge Generator to EGL Migration Guide

Table 134. Math EZE words — Floating point math functions

EZE word in VisualAge Generator 4.5 EGL definition

EZEFLADD mathLib.floatingSum

EZEFLDIV mathLib.floatingQuotient

EZEFLMOD mathLib.floatingMod

EZEFLMUL mathLib.floatingProduct

EZEFLSET mathLib.floatingAssign

EZEFLSUB mathLib.floatingDifference

User interface EZE words

The left table column shows the VisualAge Generator 4.5 EZE word. The right

column shows what the migration tool converts the EZE word to in EGL. The

argument lists are the same in VisualAge Generator as they are in EGL, so they are

omitted from the table.

 Table 135. User interface EZE words

EZE word in VisualAge Generator 4.5 EGL definition

EZEUIERR sysLib.setError

EZEUILOC sysLib.setLocale

Object scripting EZE words

 Table 136. Object scripting EZE words

EZE word in VisualAge Generator 4.5 EGL definition

EZESCRPT(targetScriptName) The migration tool issues an error message. The

function part cannot be migrated correctly. The

original EZESCRPT statement is included as a

comment in the EGL source code.

Service Routines

The service routines section is organized into the following tables:

v Service Routines - general syntax, Table 137 on page 313

v Service Routines - VisualAge Generator and EGL equivalent routines, Table 138

on page 314

 Table 137. Service Routines - general syntax

VisualAge Generator 4.5 EGL produced by the migration tool Migration tool considerations

CALL serviceRoutine

 [argumentList] ;

syslib.EGLSystemFunction

 ([argumentList]);

Note: EGL system functions use the

same argument list as in VisualAge

Generator.

No special considerations.

Appendix B. Relationship of VisualAge Generator and EGL Language Elements 313

Table 137. Service Routines - general syntax (continued)

VisualAge Generator 4.5 EGL produced by the migration tool Migration tool considerations

CALL serviceRoutine

 [argumentList] (REPLY ;

try

 sysLib.EGLSystemFunction

 ([argumentList]);

end;

Note: EGL system functions use the

same argument list as in VisualAge

Generator.

If the (REPLY option is included in

VisualAge Generator, the migration tool

includes a try... end block.

 Table 138. Service Routines - VisualAge Generator and EGL equivalent routines

VisualAge Generator 4.5 EGL produced by the migration tool Migration tool considerations

CALL AUDIT sysLib.audit No special considerations.

CALL COMMIT sysLib.commit No special considerations.

CALL CREATX sysLib.startTransaction No special considerations.

CALL CSPTDLI VGLib.VGTDLI

Note: EGL also supports EGLTDLI

and AIBTDLI.

No special considerations.

CALL EZCHART call EZCHART [arguments]

 externallyDefined ;

Note: There is no replacement for

EZCHART in EGL.

The VAGen migration tool converts

EZCHART to a call to an externally

defined program.

If the REPLY option is specified in

VisualAge Generator, the migration tool

nests the call statement within a try ...

end block.

CALL RESET sysLib.rollback No special considerations.

PSBs

In VisualAge Generator, the PSB is a part type. The PSB contains a subset of the

information in the IMS or DL/I PSB. There is no name associated with a TP PCB.

The database name associated with DB and GSAM PCBs does not have to be

unique. A DL/I I/O function can refer to a specific PCB within the PSB either by

the database name or by the PCB number. In statements and a program’s called

parameter list, the EZEDLPCB special function word enables you to refer to a PCB

by number. The I/O PCB is not explicitly included in the VAGen PSB, but is

always present for the IMSVS, IMSBMP, and MVS Batch target environments. The

I/O PCB is considered to be PCB number 0.

In EGL, the PSB is a subtype of the record part type. The PSBRecord is a non-fixed

record. The name of each PCB variable within the PSBRecord must be unique. A

DL/I I/O function can refer to a specific PCB by using the name given to the PCB

variable within the PSBRecord. Similarly, in statements and in a program’s

parameter list, you use the name given to the PCB variable within the PSB.

The migration tool creates a variable name for each TP PCB based on its numeric

position within the VAGen PSB. The tool creates a variable name for each DB or

GSAM PCB using a combination of the database name from the VAGen PSB, a

customer-specified suffix indicating the type of the PCB, and, if necessary, a

number to create a unique variable name. The tool also creates a variable to

314 Rational Software Development Platform: VisualAge Generator to EGL Migration Guide

redefine the named DB and GSAM PCBs. The redefinition variable is based on the

numeric position of the PCB within the VAGen PSB. This enables the migration

tool to use either variable (database name or PCB number) during migration.

 Table 139. PSB

VisualAge Generator 4.5 EGL produced by the migration tool Migration tool considerations

PSB information:

v Name

v PCB information varies by PCB

type

– Number

– Type

- TP

- DB

- GSAM

– Database

– Segment

– Parent

– Index Key

Note:

v The PSB is a separate part type.

v The I/O PCB is not explicitly

specified, but must be in the

DL/I PSB for the IMSVS, IMS

BMP, and MVS Batch

environments.

EGL syntax example:

Record psbName type PSBRecord

 {defaultPSBName =

 "originalPSBName"}

 iopcb IO_PCBRecord;

 { @PCB { pcbType=PCBKind.TP }};

 pcb0 IO_PCBRecord

 { redefines="iopcb" };

 [otherPCBInformation]

end // end psbName

Note:

v The PSB is a type of record.

v The I/O PCB must be explicitly

specified.

v EGL uses the @PCB complex property

to specify the PCB type.

v EGL provides record definitions for

the following records:

– IO_PCBRecord

– ALT_PCBRecord

– DB_PCBRecord

– GSAM_PCBRecord

v EGL ignores (removes) the I/O PCB

variable when generating for a CICS

environment.

The migration tool only includes the

defaultPSBName property if the PSB

must be renamed due to a reserved

word or because the name started

with the # or @ symbol.

The migration tool always adds the

variable iopcb and the pcb0

redefinition to every PSB.

PCB Type - TP

v Number

ELAALT ALT_PCBRecord

 {@PCB { pcbType = PCBKind.TP }};

pcb1 ALT_PCBRecord

 { redefines = "ELAALT" };

ELAEXP ALT_PCBRecord

 {@PCB { pcbType = PCBKind.TP }};

pcb2 ALT_PCBRecord

 { redefines = "ELAEXP" };

pcbn ALT_PCBRecord

 { @PCB { pcbType = PCBKind.TP }};

Note:

v EGL ignores (removes) the alternate

PCB variables when generating for a

CICS environment.

The migration tool uses ELAALT and

ELAEXP as the names for the first

two TP PCBs in the VAGen PSB. The

migration tool also creates

redefinitions for these two TP PCBs

so they can be referred to by number.

If there are additional TP PCBs, the

migration tool creates a variable name

for the TP PCB based on the PCB

number within the PSB. This enables

the migration tool to use pcbn as the

replacement for EZEDLPCB[n].

Appendix B. Relationship of VisualAge Generator and EGL Language Elements 315

Table 139. PSB (continued)

VisualAge Generator 4.5 EGL produced by the migration tool Migration tool considerations

PCB Type - DB

v Number

v Database

v Segment

v Parent

v Index Key

Note:

v The same database name can be

used for multiple PCBs in the

PSB.

DBName_dbSuffix DB_PCBRecord

{ @PCB { pcbType = PCBKind.DB,

 secondaryIndex = "indexKeyName",

 secondaryIndexItem =

 "renamedIndexKey",

 hierarchy =

 [@Relationship

 { segmentRecord =

 "segmentName",

 parentRecord =

 "parentSegmentName" }] } };

pcbn DB_PCBRecord

{ redefines = "DBName_dbSuffix" };

Note:

v Because the PSB is a record and each

database name becomes a field within

the record, each database name must

be unique.

The migration tool creates the

variable name for a DB PCB based on

the VAGen Database name followed

by a suffix. You can specify the suffix

with the Stage 2 VAGen Migration

Database I/O Preferences.

If necessary, to create a unique

DBName, the migration tool includes

a number. For example:

DBName_n_dbSuffix, where n is the

same number as in the pcbn

redefinition.

The migration tool only includes the

secondaryIndexItem property if the

VAGen Index Key must be renamed

due to a conflict with an EGL

reserved word or because the name

starts with the # or @ symbol.

The migration tool also creates a

redefinition of the DB PCB based on

the PCB number within the VAGen

PSB.

PCB Type - GSAM

v Number

v Database

DBName_gsamSuffix GSAM_PCBRecord

 { @PCB

 { pcbType = PCBKind.GSAM }};

 pcbn GSAM_PCBRecord

 { redefines =

 "DBName_gsamSuffix" };

Note:

v Because the PSB is a record and each

database name becomes a field within

the record, each database name must

be unique.

v EGL ignores (removes) the GSAM

PCB variables when generating for a

CICS environment.

The migration tool creates the

variable name for a GSAM PCB based

on the VAGen Database name

followed by a suffix. You can specify

the suffix with the Stage 2 VAGen

Migration Database I/O Preferences.

If necessary, to create a unique

DBName, the migration tool includes

a number. For example:

DBName_n_gsamSuffix, where n is

the same number as in the pcbn

redefinition.

The migration tool also creates a

redefinition of the GSAM PCB based

on the PCB number within the

VAGen PSB.

Control parts

In VisualAge Generator, control parts are entered using a free-form text editor. The

control parts are not validated until they are actually used during generation.

Whether something is in upper or lower case is not significant. In EGL, control

parts are stored in .eglbld files in XML notation, with a special editor for each type

of control part.

In EGL, upper and lower case are significant. The tables in this section compare the

information you enter in the VisualAge Generator free-form text editor with the

XML tag or attribute value that is used in EGL. The tables only show the tag or

attribute values, not the actual XML syntax.

316 Rational Software Development Platform: VisualAge Generator to EGL Migration Guide

Note:

v The migration tool includes as comments those generation options,

linkage table options, and resource association options that have no

corresponding EGL replacement but which might be useful to you in

determining related information that is required for EGL. For example,

the migration tool includes the generation option /jspreldir as a comment.

These comments are not displayed when you use the normal EGL Build

Part Editor. However, you can see the comments if you open the file with

the Text Editor.

v The migration tool eliminates generation options that have no

corresponding EGL replacement if the information is not useful in

determining current or future EGL options. For example, there is no

replacement for /lineinfo, which was an option to assist IBM support in

debugging the VAGen generator. This option is not useful for the EGL

generator, so the migration tool does not include it as a comment.

v The migration tool does not rename control parts, except for the

following:

– The migration tool removes the .BND suffix from the end of a bind

control part name.

– The migration tool removes the .LKG suffix from the end of a link edit

part name.

– The migration tool changes any other dots to underscores in control

part names.

– The tool also changes dots to underscores in control part names that

are referenced in the /OPTIONS, /RESOURCE, and /LINKEDIT

generation options.

– The migration tool issues an error message if the part name conflicts

with an EGL reserved word.

The control parts section is organized into the following tables:

v General control part information, Table 140 on page 318

v Generation options, Table 141 on page 318

v Generation options - conversion table values, Table 142 on page 334

v Linkage table options for :calllink, Table 143 on page 334

v Linkage table options for :filelink, Table 144 on page 338

v Linkage table options for :crtxlink, Table 145 on page 339

v Linkage table options for :dxfrlink, Table 146 on page 340

v Resource association, Table 147 on page 341

v Link edit options, Table 148 on page 345

v Bind control, Table 149 on page 345

v Part-related symbolic parameters, Table 150 on page 346

v File-related symbolic parameters, Table 151 on page 347

v User-defined symbolic parameters, Table 152 on page 347

Appendix B. Relationship of VisualAge Generator and EGL Language Elements 317

Table 140. General control part information

VisualAge Generator 4.5 EGL produced by the migration tool Migration tool considerations

VAGen control part names:

v Can include the period (.) in

the name.

v For bind and linkedit parts,

any portion of the name after

the first period is treated as a

suffix. The suffix can be

specified in the /bind and

/linkedit generation options.

EGL build parts:

v The period (.) is not valid in a build

part name.

The migration tool changes the period

(.) to an underscore (_).

Upper and lower case are not

significant in VAGen control part

tags and values.

Upper and lower case are significant in

EGL control part tags and values.

The migration tool converts the

control part tags and values to the

correct case required for EGL.

Generation options part

 Table 141. Generation options

VisualAge Generator 4.5 EGL produced by the migration tool Migration tool considerations

VAGen generation options part:

v Contains one or more

generation options.

v Can be chained using the

/options generation option.

v Can reference any other

control part that is included in

the workspace at generation

time. The referenced control

parts are not considered to be

associates of the generation

options part.

EGL build descriptor part:

v Contains one or more build descriptor

options.

v Can be chained using the

nextBuildDescriptor build descriptor

option

v Can only reference other build parts

where one of the following is true:

– The build parts are included in the

same .eglbld file.

– The build parts are in files that are

imported by the .eglbld file.

If your VAGen control parts are all in

the same VisualAge Java package or

VisualAge Smalltalk application, the

control parts will all be placed in the

same .eglbld file. In this situation, no

import statements are required.

If your VAGen control parts are in

different VisualAge Java packages or

VisualAge Smalltalk applications, the

migration tool does not create the

import statements. You will need to

add the import statements. There will

be an error in the Problems view if

EGL is unable to resolve references to

other control parts.

VAGen generation option values

are only enclosed in quotes if

they contain special characters

for a directory or file name.

EGL build descriptor option values must

be enclosed in quotes. However, if you

use the EGL Build Parts Editor, the editor

automatically inserts the quotes for you

into the XML source. You do not see the

quotes in the editor.

The migration tool includes the

quotes automatically when it builds

the XML source for the .eglbld file.

318 Rational Software Development Platform: VisualAge Generator to EGL Migration Guide

Table 141. Generation options (continued)

VisualAge Generator 4.5 EGL produced by the migration tool Migration tool considerations

Many VAGen generation options

can be specified as /xxxx or

/noxxxx to reflect the positive or

negative of the generation

option. The following is an

example:

v /prep indicates that you want

the preparation step to be

automatically started

immediately after generation.

v /noprep indicates that you do

not want the preparation step

to be started automatically

because you plan to run it at a

later time.

Many EGL build descriptor options can

be specified as xxxx=″YES″ or xxxx=″NO″

to reflect the positive or negative of the

build descriptor option. The following is

an example:

v prep=″YES″ indicates that you want the

preparation step to be automatically

started immediately after generation.

v prep=″NO″ indicates that you do not

want the preparation step to be started

automatically because you plan to run

it at a later time.

The migration tool processes the

options as follows:

v The migration tool converts /xxxx

to the corresponding xxxx=″YES″

option unless otherwise indicated.

v The migration tool converts

/noxxxx to the corresponding

xxxx=″NO″ option unless otherwise

indicated.

/ansisql Not supported. The migration tool includes this

option as a comment.

/bidicontable=xxxx bidiConversionTable=″xxxx″ No special considerations.

/bind=xxxx

In VisualAge Generator, xxxx is

the suffix of the bind part. The

bind part for a program is

named pgmname.xxxx, where

xxxx is the suffix specified by the

/bind option. The reasons you

might specify a /bind=suffix are

as follows:

1. A special bind is needed for

the program because you

bind the program into

multiple DB2 plans, and

2. VisualAge Generator did not

enable you to easily create a

bind part with exactly the

same name as the program.

bind=″xxxx″

The meaning of the bind option is not

the same as in VisualAge Generator. In

EGL, xxxx is the full name of the bind

part. The bind option only needs to be

specified if the bind part name differs

from that of the program. In most cases,

the program and bind part will have the

same name, so there is no need to

include the bind option.

The bind option is only necessary if you

generate the same program for multiple

runtime environments and require special

bind commands for each environment.

Another use for the bind option is to

specify the name of a part that contains a

template for your bind command. A

project administrator or DBA can define

a bind part that includes substitutable

SYMPARMS for member-specific

parameters. You can use the EGL bind

option to point to this template part. This

technique works well if you bind a

package for each program.

Because the value for bind has

different meanings in VisualAge

Generator and EGL, the migration

tool cannot migrate this option. The

migration tool includes /bind as a

comment.

/checktype=xxxx

xxxx is one of the following:

v none

v low

v all

checkType="xxxx"

xxxx is one of the following:

v NONE

v LOW

v ALL

No special considerations.

/cicsdbcs Not supported. The migration tool does not include

this option as a comment because all

supported CICS translators now

include support for DBCS.

Appendix B. Relationship of VisualAge Generator and EGL Language Elements 319

Table 141. Generation options (continued)

VisualAge Generator 4.5 EGL produced by the migration tool Migration tool considerations

/cicsentries=xxxx

xxxx is one of the following:

v none

v rdo

v macro

cicsEntries="xxxx"

xxxx is one of the following:

v NONE

v RDO

v MACRO

No special considerations.

/cobollevel=le | vs Not supported. The migration tool includes this

option as a comment.

commentlevel=n or

/commentlevel=commentText

n or commentText are one of the

following:

v 0 or minimum

v 1 or info

v 2 or logic

v 3 or data

v 4 or statements

Note:

v Either the numeric value or its

equivalent commentText can be

specified.

v 0 = genoption comments only

v 1 = alias names, standard

generation information

v 2 = program and table prolog,

and function descriptions

v 3 = record prologs and data

item descriptions

v 4 = source statements and

comments

v For C++, the only valid values

are 0 = none and 1 =

comments

commentLevel="n"

n is one of the following:

v 0

v 1

v 1

v 1

v 1

Note:

v 0 = no comments

v 1 = comments are included

The migration tool migrates

/commentlevel=0 or minimum to 0

and all other values to 1.

/configmapname="xxxx"

xxxx is the name of a VisualAge

Smalltalk configuration map.

Not supported. The migration tool includes this

option as a comment because it might

be useful in determining groups of

related EGL projects that should be

checked into your source code

repository as a unit.

/configmapversion="xxxx"

xxxx is the version name of the

VisualAge Smalltalk

configuration map specified by

/configmapname.

Not supported. The migration tool includes this

option as a comment because it might

be useful in determining groups of

related EGL projects that should be

checked into your source code

repository as a unit.

320 Rational Software Development Platform: VisualAge Generator to EGL Migration Guide

Table 141. Generation options (continued)

VisualAge Generator 4.5 EGL produced by the migration tool Migration tool considerations

/contable=xxxx

xxxx is the name of a conversion

table.

clientCodeSet="yyyy"

serverCodeSet="zzzz"

yyyy and zzzz are the names of the client

and server conversion tables, respectively.

The migration tool sets both the

clientCodeSet and the serverCodeSet

options from the VAGen /contable

generation option. See Table 142 on

page 334 for the correspondence

between the VAGen and EGL values.

If the value for /contable=xxxx is not

in Table 142 on page 334, the

migration tool sets both clientCodeSet

and serverCode to xxxx.

/createdds genDDSFile=″YES″ | ″NO″

Note: This is for ISERIESC.

No special considerations.

/currency=xxx (1 to 3 characters) currencySymbol=″xxx″ No special considerations.

/data = 24 | 31 data=″24″ | ″31″ No special considerations.

/dbms=xxxx

xxxx is one of the following:

v db2

v oracle

v odbc

Note: In VisualAge Generator,

Oracle and ODBC are only

supported for certain workstation

platforms.

dbms="xxxx"

xxxx is one of the following:

v DB2

v ORACLE

v DB2

Note:

v In EGL, Oracle is only supported if

you use Java generation.

v EGL Java generation supports JDBC

instead of ODBC.

The migration tool changes odbc to

DB2 and issues a warning message.

/dbpassword=xxxx sqlPassword=″xxxx″ The migration tool merges the VAGen

/dbpassword and /sqlpassword

options into the EGL sqlPassword

option. If a generation options part

includes both /dbpassword and

/sqlpassword, the migration tool

includes the sqlPassword twice. There

should be an error in the Problems

view.

/dbuser=xxxx sqlID=″xxxx″ The migration tool merges the VAGen

/dbuser and /sqlID options into the

EGL sqlID option. If a generation

options part includes both /dbuser

and /sqlID, the migration tool

includes the sqlID twice. There

should be an error in the Problems

view.

/debugtrace debugTrace=″YES″ | ″NO″ No special considerations.

/destaccount=xxxx Not supported. The migration tool includes this

option as a comment.

/destdir=xxxx destDirectory=″xxxx″ No special considerations.

/desthost=xxxx destHost=″xxxx″ No special considerations.

/destlib=xxxx destLibrary=″xxxx″

Note: This is for ISERIESC.

No special considerations.

/destpassword=xxxx destPassword=″xxxx″ No special considerations.

Appendix B. Relationship of VisualAge Generator and EGL Language Elements 321

Table 141. Generation options (continued)

VisualAge Generator 4.5 EGL produced by the migration tool Migration tool considerations

/destuid=xxxx destUserID=″xxxx″ No special considerations.

/dxfrcancel cancelAfterTransfer=″YES″ | ″NO″ No special considerations.

/dxfrxctl useXctlForTransfer=″YES″ | ″NO″ No special considerations.

/ejbgroup=xxxx Not supported. The migration tool includes this

option as a comment.

/endcommarea endCommarea=″YES″ | ″NO″ No special considerations.

/errdest=xxxx errorDestination=″xxxx″

Note: This is for IMS.

No special considerations.

/fastpath imsFastPath=″YES″ | ″NO″

Note: This is for IMS.

No special considerations.

/fold Not supported. The migration tool includes this

option as a comment.

/ftptranslationcmddbcs=xxxx Not supported. EGL only supports

TCP/IP for transferring files to the host.

The migration tool includes this

option as a comment.

/ftptranslationcmdsbcs=xxxx Not supported. EGL only supports

TCP/IP for transferring files to the host.

The migration tool includes this

option as a comment.

/genauthortimevalues

/nogenauthortimevalues

Not supported. The migration tool includes this

option as a comment.

/genhelpmaps genHelpFormGroup=″YES″ | ″NO″ No special considerations.

/genmaps genFormGroup=″YES″ | ″NO″ No special considerations.

/genout=xxxx genDirectory=″xxxx″ The migration tool converts /genout

and places the result in both the

original build descriptor and the new

build descriptor part referenced by

the secondaryTargetBuildDescriptor

option.

If you generate for Java, you might

need to specify the genProject build

descriptor option in addition to or

instead of the genDirectory option.

genProject is required in these cases:

v If you generate for HP-UX or

SOLARIS

v If you generate VGWebTransactions

or VGUI records

/genproperties

/nogenproperties

genProperties="GLOBAL"

genProperties="NO"

EGL also provides

genProperties=″PROGRAM″.

The migration tool converts

/genproperties to the EGL

genProperties=″GLOBAL″ because this

is the closest value in terms of what

is generated.

/genresourcebundle

/nogenresourcebundle

genResourceBundle=″YES″ | ″NO″ The migration tool converts

/genresourcebundle and places the

result in both the original build

descriptor and the new build

descriptor part referenced by the

secondaryTargetBuildDescriptor option.

/genret genReturnImmediate=″YES″ | ″NO″ No special considerations.

/gentables genDataTables=″YES″ | ″NO″ No special considerations.

322 Rational Software Development Platform: VisualAge Generator to EGL Migration Guide

Table 141. Generation options (continued)

VisualAge Generator 4.5 EGL produced by the migration tool Migration tool considerations

/genuirecords genVGUIRecords=″YES″ | ″NO″ No special considerations.

/groupname=xxxx Not supported. The migration tool includes this

option as a comment.

/inedit=all

/inedit=inonly

validateOnlyIfModified="NO"

validateOnlyIfModified="YES"

No special considerations.

/initaddws

In VisualAge Generator, the

primary working storage record

is always initialized. The

/initaddws generation option

provides initialization of other

working storage records specified

on the Tables and Additional

Records list.

initNonIOData="YES" | "NO"

In EGL, the record specified as the

inputRecord for main programs is always

initialized. The initNonIOData build

descriptor option provides initialization

of other basic records specified in the

data declarations for the program. In

addition, EGL enables you to specify the

initialized property for any record

declaration in the program. The

initialized property provides a finer

control than the initNonIOData build

descriptor option.

The migration tool migrates the

primary working storage record for

main programs to the EGL

inputRecord property and also

includes the record declaration

without the initialized property. The

migration tool migrates the primary

working storage record for called

programs to a record declaration with

the initialized property. If the

migration tool created an additional

record for level 77 items, the

migration tool includes a data

declaration for the record and also

includes the initialized property. This

provides the same initialization for

primary working storage records as in

VisualAge Generator. All other basic

records are initialized based on the

initNonIOData build descriptor

option.

/initrecd initIORecords=″YES″ | ″NO″ No special considerations.

/javadestdir=xxxx destDirectory=″xxxx″ The migration tool converts

/javadestdir and places the result in

the new build descriptor part

referenced by the

secondaryTargetBuildDescriptor option.

/javadesthost=xxxx destHost=″xxxx″ The migration tool converts

/javadesthost and places the result in

the new build descriptor part

referenced by the

secondaryTargetBuildDescriptor option.

/javadestpassword=xxxx destPassword=″xxxx″ The migration tool converts

/javadestpassword and places the

result in the new build descriptor

part referenced by the

secondaryTargetBuildDescriptor option.

/javadestuid=xxxx destUserID=″xxxx″ The migration tool converts

/javadestuid and places the result in

the new build descriptor part

referenced by the

secondaryTargetBuildDescriptor option.

Appendix B. Relationship of VisualAge Generator and EGL Language Elements 323

Table 141. Generation options (continued)

VisualAge Generator 4.5 EGL produced by the migration tool Migration tool considerations

/javasystem=xxxx

xxxx is one of the following:

v AIX

v LINUX

v OS2

v OS390

v OS400

v SOLARIS

v WINNT

system=″xxxx″

The corresponding EGL values are:

v AIX

v LINUX

v not supported

v USS

v ISERIESJ

v SOLARIS

v WIN

The migration tool converts the

supported /javasystem values and

places the result in the new build

descriptor part referenced by the

secondaryTargetBuildDescriptor option.

The tool includes unsupported values

as a comment in the original build

descriptor part.

/jobcard=xxxx Not supported. The equivalent function

is provided as follows:

v The z/OS and iSeries build servers

handle the jobcard. These

environments ignore the JOBCARD

symbolic parameter.

v VSE supports the JOBCARD symbolic

parameter.

The migration tool converts this

option to the JOBCARD symbolic

parameter.

/jobname=xxxx Not supported. The equivalent function

is provided as follows:

v For z/OS and iSeries, you can use

$USERID as the job name in the build

script. EGL generation substitutes

$USERID with the value from the

destUserID build descriptor option

concatenated with a number to

provide a unique job name. These

environments ignore the JOBNAME

symbolic parameter.

v VSE supports the JOBNAME symbolic

parameter.

The migration tool converts this

option to the JOBNAME symbolic

parameter

/jspreldir=″xxxx″ Not supported. The migration tool includes this

option as a comment.

/leftjust leftAlign=″YES″ | ″NO″ No special considerations.

/lineinfo Not supported. The migration tool does not include

this option as a comment because the

option was only meanighful for IBM

support to debug the VAGen

generator. It had no effect on the

generated COBOL.

/lines=nn Not supported. The migration tool includes this

option as a comment.

/linkage=xxxx

xxxx is the name of a VAGen

linkage table part.

linkage="xxxx"

xxxx is the name of an EGL linkage

options part.

No special considerations.

324 Rational Software Development Platform: VisualAge Generator to EGL Migration Guide

Table 141. Generation options (continued)

VisualAge Generator 4.5 EGL produced by the migration tool Migration tool considerations

/linkedit=xxxx

In VisualAge Generator, xxxx is

the suffix of the linkedit part.

The linkedit part for a program

is named pgmname.xxxx, where

xxxx is the suffix specified by the

/linkedit option. The reasons

you might have specified a

/linkedit=suffix are as follows:

1. A special linkedit is needed

for the program such as for

static linkedit to PL/I, and

2. VisualAge Generator did not

enable you to easily create a

linkedit part with exactly the

same name as the program.

linkEdit="xxxx"

The meaning of linkEdit is not the same

as in VisualAge Generator. In EGL, xxxx

is the full name of the linkedit part. The

linkEdit option only needs to be specified

if the linkedit part name differs from that

of the program. In most cases, the

program and linkedit part will have the

same name, so there is no need to

include the linkEdit option.

The linkEdit option is only necessary if

you generate the same program for

multiple runtime environments and

require special linkedit commands for

each environment.

Because the value for linkedit has

different meanings in VisualAge

Generator and EGL, the migration

tool cannot migrate this option. The

migration tool includes /linkedit as a

comment.

/listing

/listingonerror

/nolisting

Note: This is a three-way switch.

Not supported. The migration tool includes this

option as a comment.

/locvalid Not supported. The migration tool includes this

option as a comment.

/log=xx

OR

/nolog

imsLogID="xx"

OR

include /nolog as a comment

Note: This is for IMS.

The migration tool processes this

option as follows:

v /log=xx is converted to

imsLogID=″xx″

v /nolog is converted to a comment.

/math=xxxxx

xxxxx is one of the following:

v cobol

v cspae

math="xxxxx"

xxxxx is one of the following:

v COBOL

v CSPAE

No special considerations.

Appendix B. Relationship of VisualAge Generator and EGL Language Elements 325

Table 141. Generation options (continued)

VisualAge Generator 4.5 EGL produced by the migration tool Migration tool considerations

/mfsdev =

 (’deviceName’,

 ’MFSInfo’,

 ’eAI’

)

Note:

v The VAGen deviceName is

used. MFSInfo provides the

corresponding MFS

information to use for the

VAGen device. eAI provides

the extended attribute

information.

v The values for eAI are: EATTR,

NOEATTR, and NCD.

v Multiple MFSInfo and eAI

values can be provided for a

single deviceName.

v See the VisualAge Generator

Server Guide for MVS, VSE, and

VM for the details of this

generation option.

<mfsDevice

 width="nn", height="nn",

 devStmtParms="MFSInfo",

 extendedAttributes="eAI"

 />

Note:

v The EGL device size (width and

height) are used. MFSInfo and eAI

provide the same information as in

VisualAge Generator.

v The values for eAI are: YES, NO, and

NCD.

v Multiple MFSInfo and eAI values can

be provided for a single device size.

v See the EGL Reference for the details of

this build descriptor option.

The migration tool converts the

VAGen deviceName to the

corresponding width and height. For

the relationship between the device

names and sizes, see Table 93 on page

254. If two deviceNames convert to

the same width and height and have

the same values specified for MFSInfo

and eAI, the migration tool only

includes one entry.

The migration tool does not change

the value of MFSInfo.

The migration tool converts the

values of eAI to their corresponding

EGL values.

/mfseattr

/nomfseattr

/mfseattrncd

In VisualAge Generator, these 3

options provide a 3-way switch

to give information that is

needed to generate extended

attribute support for maps in

MFS format.

mfsExtendedAttr="YES"

mfsExtendedAttr="NO"

mfsExtendedAttr="NCD"

Note: This is for IMS.

No special considerations.

/mfsignore mfsIgnore=″YES″ | ″NO″

Note: This is for IMS

No special considerations.

/mfstest mfsUseTestLibrary=″YES″ | ″NO″

Note: This is for IMS

No special considerations.

/msgtableprefix=xxxx

In VisualAge Generator, the

message table prefix is specified

on the program. When you

generate the UI record by itself

you must specify the message

table prefix during generation.

msgTablePrefix = ″xxxx″

In EGL, the same considerations for the

msgTablePrefix apply as in VisualAge

Generator.

The migration tool converts

/msgtableprefix and places the result

in both the original build descriptor

and the new build descriptor part

referenced by the

secondaryTargetBuildDescriptor option.

If you generate a VGUI record by

itself without generating the program

that uses it, you must include the

package name with the message table

prefix (for example, msgTablePrefix =

″packageName.prefixID″).

326 Rational Software Development Platform: VisualAge Generator to EGL Migration Guide

Table 141. Generation options (continued)

VisualAge Generator 4.5 EGL produced by the migration tool Migration tool considerations

/msp=xxxx

xxxx is one of the following:

v all

v gsam

v mfs

v seq

formServicePgmType="xxxx"

xxxx is one of the following:

v ALL

v GSAM

v MFS

v SEQ

Note: This is for IMS.

No special considerations.

/nullfill fillWithNulls=″YES″ | ″NO″ No special considerations.

/numovfl checkNumericOverflow=″YES″ | ″NO″ No special considerations.

/options=xxxx

xxxx is the name of another

VAGen generation options part.

nextBuildDescriptor="xxxx"

xxxx is the name of another EGL build

descriptor part.

No special considerations.

/packagename=xxxx Not supported. The migration tool includes this

option as a comment.

/possign=x

x is one of the following:

v f

v c

positiveSignIndicator="x"

x is one of the following:

v F

v C

Note: This is for ISERIESC.

No special considerations.

/prep prep =″YES″ | ″NO″ No special considerations.

/prepfile buildPlan=″YES″ | ″NO″ No special considerations.

/printdest=xxxx

xxxx is one of the following:

v ezeprint

v termid

printDestination="xxxx"

xxxx is one of the following:

v PROGRAMCONTROLLED

v TERMINALID

No special considerations.

/project="xxxx"[,"version"]

xxxx is the name of a VisualAge

for Java project, and version is the

version name for the specified

project.

Not supported. The migration tool includes this

option as a comment because it might

be useful in determining groups of

related EGLprojects that should be

checked into your source code

repository as a unit.

/projectid=xxxx projectID=″xxxx″ No special considerations.

/recovery restoreCurrentMsgOnError=″YES″ |

″NO″

Note: This is for IMS.

No special considerations.

/resource=xxxx

xxxx is the name of a VAGen

resource associations part.

resourceAssociations="xxxx"

xxxx the name of an EGL resource

associations part.

No special considerations.

/resourcebundlelocale=xxxx resourceBundleLocale = ″xxxx″ The migration tool converts

/resourcebundlelocale and places the

result in both the original build

descriptor and the new build

descriptor part referenced by the

secondaryTargetBuildDescriptor option.

Appendix B. Relationship of VisualAge Generator and EGL Language Elements 327

Table 141. Generation options (continued)

VisualAge Generator 4.5 EGL produced by the migration tool Migration tool considerations

/resvword=xxxx reservedWord=″xxxx″ No special considerations.

/rt=xxxx returnTransaction=″xxxx″ No special considerations.

/runfile genRunFile=″YES″ | ″NO″ No special considerations.

/sendtranslationcmddbcs=xxxx Not supported.

Note: EGL only supports TCP/IP for

transferring files to the host.

The migration tool includes this

option as a comment.

/session=xxxx Not supported.

Note: EGL only supports TCP/IP for

transferring files to the host.

The migration tool includes this

option as a comment.

/setfull setFormItemFull=″YES″ | ″NO″ No special considerations.

/sp checkToTransaction=″YES″ | ″NO″ No special considerations.

/spa=xxxx,ADF,yyyy

Note: ADF is optional. yyyy is

optional so all of the following

are valid in VisualAge Generator:

 /spa=xxxx

/spa=xxxx,ADF,yyyy

/spa=xxxx,,yyyy

In EGL, there are 3 separate options:

spaSize="xxxx"

spaADF= "YES" | "NO"

spaStatusBytePosition="yyyy"

The migration tool splits the /spa

option into the 3 EGL options.

The migration tool only includes

spaADF if the value is YES.

/spzero spacesZero=″YES″ | ″NO″ No special considerations.

/sqldb=xxxx sqlDB=″xxxx″ No special considerations.

/sqlid=xxxx sqlID=″xxxx″ The migration tool merges the VAGen

/dbuser and /sqlID options into the

EGL sqlID option. If a generation

options part includes both /dbuser

and /sqlID, the migration tool

includes the sqlID twice. There

should be an error in the Problems

view.

/sqlpassword=xxxx sqlPassword=″xxxx″ The migration tool merges the VAGen

/dbpassword and /sqlpassword

options into the EGL sqlPassword

option. If a generation options part

includes both /dbpassword and

/sqlpassword, the migration tool

includes the sqlPassword twice. There

should be an error in the Problems

view.

/sqlvalid validateSQLStatements=″YES″ | ″NO″ No special considerations.

328 Rational Software Development Platform: VisualAge Generator to EGL Migration Guide

Table 141. Generation options (continued)

VisualAge Generator 4.5 EGL produced by the migration tool Migration tool considerations

/symparm=pppppppp,’vvvv’

v pppppppp is the name of the

symbolic parameter. pppppppp

is 1 - 8 characters.

v vvvv is the value. Two

consecutive single-quotes

within the value is one

single-quote.

EGL supports many of the same

predefined symbolic parameters as

VisualAge Generator. You can also use

any user-defined symbolic parameters as

long as they do not conflict with any of

the new EGL symbolic parameters.

The migration tool processes symbolic

parameters as follows:

v The migration tool converts any

VAGen-defined symbolic

parameters to the corresponding

EGL symbolic parameter.

v If there is no corresponding EGL

symbolic parameter, the migration

tool converts the VAGen-defined

symbolic parameter to the syntax

of an EGL symbolic parameter

without changing the parameter

name or value. The migration tool

also issues an error message.

v The migration tool converts any

user-defined symbolic parameters

to the syntax of an EGL symbolic

parameter without changing the

parameter name or value.

/SYMPARM=EZALTXTR,’xxxx’ transferErrorTransaction=″xxxx″ No special considerations.

/SYMPARM=EZONEAS2,’xxxx’ oneFormItemCopybook=″YES″ No special considerations.

/syncdxfr synchOnPgmTransfer=″YES″ | ″NO″

Note: This is for DL/I for the CICS

environment.

No special considerations.

/syncxfer synchOnTrxTransfer=″YES″ | ″NO″ No special considerations.

/syscodes sysCodes=″YES″ | ″NO″ No special considerations.

Appendix B. Relationship of VisualAge Generator and EGL Language Elements 329

Table 141. Generation options (continued)

VisualAge Generator 4.5 EGL produced by the migration tool Migration tool considerations

/system=xxxx

xxxx is one of the following:

v MVSBATCH

v MVSCICS

v IMSBMP

v IMSVS

v AIX

v JAVALINUX

v JAVAOS390

v JAVAOS400

v JAVAWINNT

v JAVAWRAPPER

v WINNT

v LINUX

v OS400

v VSEBATCH

v VSECICS

v HP

v SOLARIS

The following environments can

also be specified in VAGen, but

are not converted by the

migration tool: JAVA, JAVAGUI,

WINGUI, OS2GUI, OS2,

OS2CICS, AIXCICS, NTCICS,

SOLACICS, TSO, VMCMS,

VMBATCH

system="xxxx"

The corresponding EGL values are:

v ZOSBATCH

v CICS for z/OS

v IMSBMP

v IMSVS

v AIX

v LINIX

v USS

v ISERIESJ

v WIN

v WIN

v WIN

v LINUX

v ISERIESC

v VSEBATCH

v VSECICS

v HPUX

v SOLARIS

The migration tool processes this

option as follows:

v If /system=xxxx has a

corresponding value in EGL, the

migration tool migrates to the

corresponding EGL value.

v If /system=xxxx does not have a

corresponding value in EGL, the

migration tool includes

/system=xxxx as a comment.

v For /system=JAVAWRAPPER, the

migration tool also includes the

EGL build descriptor option

enableJavaWrapperGen=″ONLY″. This

specifies that the you want to

generate only the Java wrapper for

a program.

v For the COBOL environments, the

migration tool issues a warning

message that you need to set the

destPort build descriptor option.

/targnls=xxx

xxx is a 3-character national

language code.

targetNLS="xxx"

xxx is the 3-character national language

code. All the values except ENP

(uppercase English) are identical in

VisualAge Generator and EGL. ENP does

not have a counterpart in EGL.

The migration tool converts /targnls

and places the result in both the

original build descriptor and the new

build descriptor part referenced by

the secondaryTargetBuildDescriptor

option.

The migration tool uses the VAGen

value as the targetNLS value. If the

value is ENP, there will be an error in

the Problems view. You can edit the

.eglbld file and change the value. You

might want to use ENU (mixed case

English) as a replacement for ENP.

/templates=xxxx

In VisualAge Generator,

templates are used to generate

the preparation and runtime JCL,

as well as to generate CICS

transaction and program entries.

templateDir="xxxx"

In EGL, build scripts replace preparation

templates. The only templates that are

used are to produce runtime JCL for the

ZOSBATCH, VSEBATCH, IMSBMP, and

ISERIESC target environment.

No special considerations.

330 Rational Software Development Platform: VisualAge Generator to EGL Migration Guide

Table 141. Generation options (continued)

VisualAge Generator 4.5 EGL produced by the migration tool Migration tool considerations

/trace=xxxx,yyyy

xxxx is one of the following:

v none

v sqlerr

v sqlio

yyyy is optional. If yyyy is

present, it is set to stmt.

Any combination of none, sqlerr,

or sqlio, with or without ,stmt , is

valid.

/trace splits into multiple build

descriptor options:

v If sqlerr is included --

sqlErrorTrace=″YES″

v If sqlio is included ---

sqlIOTrace=″YES″

v if stmt is included ---

statementTrace=″YES″

No special considerations.

/transfertype=xxxx

xxxx is one of the following:

v tcpip

v sna

Not supported.

Note: EGL only supports TCP/IP for

transferring files to the host.

The migration tool includes this

option as a comment.

/transid=primaryID,restartID

In VisualAge Generator,

/transid=,restart is valid, with the

primary transaction defaulting to

the first 4 characters of the

program name.

/transid splits into multiple build

descriptor options:

v If primary is included --

startTransactionID=″primaryID″

v If ,restart is included ---

restartTransactionID=″restartID″

No special considerations.

/twaoff=nnnn twaOffset=″nnnn″ No special considerations.

/unload

In VisualAge Generator /unload

directed batch generation to

unload all VisualAge Java

projects or VisualAge Smalltalk

configuration maps that

contained VAGen parts before

loading the projects or

configuration maps being

requested for the current

generation process.

Not supported. The migration tool does not include a

comment for this option.

/validmix validateMixedItems=″YES″ | ″NO″ No special considerations.

/vmloadlib=xxxx Not supported. The migration tool includes this

option as a comment.

/vselib=xxxx vseLibrary=″xxxx″ No special considerations.

/workdb=xxxx

xxxx is one of the following:

v aux

v main

v dli

v sql

workDBType="xxxx"

xxxx is one of the following:

v AUX

v MAIN

v DLI

v SQL

No special considerations.

Appendix B. Relationship of VisualAge Generator and EGL Language Elements 331

Table 141. Generation options (continued)

VisualAge Generator 4.5 EGL produced by the migration tool Migration tool considerations

Not used. vagCompatibility=″YES″ Based on the VAGen Migration

Preference Do not set compatibility

mode, the migration tool adds or

omits this option to every build

descriptor part.

Not used. itemsNullable=″NO″ The migration tool always adds this

option to every build descriptor part.

This technique is used to explicitly

show that the default of NO must be

used to preserve VAGen behavior.

In VisualAge Generator,

decimalSymbol was a runtime

property used when assigning or

comparing CHA and NUM

values in Java.

decimalSymbol="x"

x is one of the following:

v a period (.)

v a comma (,)

In EGL, you can specify this information

at generation time or at runtime.

The migration tool does not set the

decimalSymbol. You can add this

property to your build descriptor part

if you plan to generate Java source. If

you do this, the decimalSymbol will

be generated into any EGL properties

files. Alternatively, you can add the

property directly to the generated

EGL properties file.

Not used. destPort="xxxx"

In EGL, destPort specifies the port to use

when transferring generation outputs to

a host system to prepare them for

execution. The destPort build descriptor

option is required for COBOL generation

target environments.

The migration tool does not set

destPort. The default value varies by

target environment as follows:

v For z/OS® environments, there is

no default value for destPort. You

must add the destPort build

descriptor option and the value

must match the value you use in

the JCL that starts the z/OS build

server. The sample JCL for starting

a z/OS build server uses port 5555.

v For iSeries environments, there is

no default value for destPort. You

must add the destPort build

descriptor option. The value must

match the value used by the iSeries

build server.

v For VSE environments, the default

value for destPort is 21. You only

need to specify the destPort build

descriptor option if the value is

different from 21.

Not used. genProject="xxxx" If you generate for Java, you might

need to specify the genProject build

descriptor option in addition to or

instead of the genDirectory option.

genProject is required in these cases:

v If you generate for HP-UX or

SOLARIS; or

v If you generate VGWebTransactions

or VGUI records.

332 Rational Software Development Platform: VisualAge Generator to EGL Migration Guide

Table 141. Generation options (continued)

VisualAge Generator 4.5 EGL produced by the migration tool Migration tool considerations

Not supported. tempDirectory=″xxxx″ If you generate VGUI records, the

tempDirectory option enables you to

specify the directory where the

generated JSP is placed if there is

already a JSP by the same name in

the genProject directory. If

tempDirectory is not specified, the

JSP is generated into the genProject,

but with a name of newxxxx.JSP,

where xxxx is the VGUI record name.

Not supported.

In VisualAge Generator, even if

your program checks the value

of EZESYS, all the VAGen source

code must be valid for every

target environment for which

you might generate the program.

eliminateSystemDependentCode=

 "YES" | "NO"

In EGL, if your program checks the value

of systemType, you can choose to omit

source code that can never be run for

your current target generation

environment. This can make the resulting

COBOL or Java source code smaller.

The migration tool does not set

eliminateSystemDependentCode. The

default value is ″YES″.

Not used. sessionBeanID=″xxxx″ The migration tool does not set

sessionBeanID. If you are generating

Java or Java wrappers, see the EGL

online helps to determine if you need

to set the sessionBeanID build

descriptor option.

In VisualAge Generator, you

include the SQL JDBC driver

class, JNDI name, and connection

URL information in a properties

file that is used at runtime.

sqlJDBCDriverClass="xxxx"

sqlValidationConnectionURL="xx"

In EGL, you can specify this information

at generation time or at runtime.

The migration tool does not set the

sqlJDBCDriverClass and

sqlValidationConnectionURL. If you

want to specify these values at

generation time, you can do the

following:

v Specify workspace preferences. This

technique only works if you are

generating in the Eclipse

environment.

v Specify the build descriptor options

in your build descriptor parts. This

technique works when you

generate in the Eclipse environment

as well as when you generate in

batch.

In either case, you must also include

the genProperties=″GLOBAL″ or

″PROGRAM″ build descriptor option

so that the properties file will be

generated.

If you want to specify the value at

runtime, you can modify the runtime

properties in the properties file.

Appendix B. Relationship of VisualAge Generator and EGL Language Elements 333

Table 142. Generation options - conversion table values

Language Conversion Table VAGen

/contable value

EBCDIC Character Set EGL

serverCodeSet

ASCII Character Set EGL

clientCodeSet

Arabic ELACNARA IBM-420 IBM-1256

Chinese, simplified ELACNCHS IBM-935 IBM-1381

Chinese, simplified ELACNGBK IBM-1388 IBM-1386

Chinese, traditional ELACNCHT IBM-937 IBM-950

Danish ELACNDKN IBM-277 IBM-1252

Eastern European ELACN870 IBM-870 IBM-1250

English (UK) ELACN285 IBM-285 IBM-1252

English (US) ELACNENU IBM-037 IBM-1252

Finnish ELACNFIN IBM-298 IBM-1252

French ELACNFRA IBM-297 IBM-1252

German ELACNDEU IBM-273 IBM-1252

Greek ELACNGRE IBM-875 IBM-1253

Hebrew ELACNHEB IBM-424 IBM-1255

Italian ELACNITA IBM-280 IBM-1252

Japanese, Katakana ELACNJPN IBM-930 IBM-943

Japanese, Latin ELACNJPL IBM-939 IBM-943

Korean ELACNKOR IBM-933 IBM-949

Norwegian ELACNDKN IBM-277 IBM-1252

Portuguese ELACNPTB IBM-037 IBM-1252

Russian ELACNCYR IBM-1025 IBM-1251

Spanish ELACNESP IBM-284 IBM-1252

Swedish ELACNSWE IBM-278 IBM-1252

Swiss German ELACNDES IBM-500 IBM-1252

Turkish ELACNTUR IBM-1026 IBM-1254

User–defined (not

in the above list)

XXXXXXXX XXXXXXXX XXXXXXXX

Linkage table parts

The linkage table parts are Calllink, Filelink, Crtxlink, and Dxfrlink.

callLink

 Table 143. Linkage table options for :calllink

VisualAge Generator 4.5 EGL produced by the migration tool Migration tool considerations

:calllink callLink No special considerations.

334 Rational Software Development Platform: VisualAge Generator to EGL Migration Guide

Table 143. Linkage table options for :calllink (continued)

VisualAge Generator 4.5 EGL produced by the migration tool Migration tool considerations

linktype=xxxx

xxxx is one of the following:

v dynamic

v static

v cicslink

v remote

v csocall

v sessionejb

Type of call, where the EGL equivalent

options are the following:

v localCall

v localCall

v localCall

v remoteCall

v remoteCall

v ejbCall

If the VAGen linktype is omitted, the

migration tool uses localCall. The

migration tool also uses linktype in

additional places to set other

properties for the EGL CallLink

information.

applname=programName

programName is the name of the

program being called. Wildcards

are permitted.

pgmName=″programName″ No special considerations.

externalname=applname alias=″applname″ If your VAGen program had to be

renamed because the name was an

EGL reserved word, you can use the

alias property either on the program

definition or in the linkage table to

provide the original VAGen name for

the program as the name of the

generated program. Either technique

can help you avoid having to modify

non-VAGen programs that call the

VAGen program.

package=packageName package=″packageName″ If you generate Java and the calling

and called programs are in different

packages, you can include the

package name in the linkage entry for

the called program. Alternatively,

change the CALL statement to

explicitly qualify the program with

the package name or include an

import statement for the package in

the file that contains the CALL

statement.

library=libraryName

OR

dllname=libraryName

In VisualAge Generator, library

and dllname are treated as

synonyms.

library=″libraryName″ The migration tool merges the VAGen

library or dllname into the EGL

library property.

linktype=xxxx

xxxx is one of the following:

v dynamic

v static

v cicslink

linkType="xxxx"

xxxx is one of the following:

v DYNAMIC

v STATIC

v CICSLINK

No special considerations.

Appendix B. Relationship of VisualAge Generator and EGL Language Elements 335

Table 143. Linkage table options for :calllink (continued)

VisualAge Generator 4.5 EGL produced by the migration tool Migration tool considerations

parmform=xxxx

xxxx is one of the following:

v oslink

v commptr

v commdata

v cicsoslink

parmForm="xxxx"

xxxx is one of the following:

v OSLINK

v COMMPTR

v COMMDATA

v CICSOSLINK

No special considerations.

contable=xxxx

xxxx is one of the following:

v a conversionTableName

v *

v EZECONVT

v BINARY

v NONE

conversionTable="xxxx"

xxxx is one of the following:

v conversionTableName

v *

v PROGRAMCONTROLLED

v not supported

v not supported

The migration tool uses the same

conversionTableName when creating the

EGL CallLink information.

The migration tool migrates the

VAGen contable=BINARY to BINARY,

which is an unsupported value in

EGL. The migration tool also issues

an error message. There will be an

error in the Problems view. You must

correct the error by editing the .eglbld

file and selecting the supported value

that you want to use.

The migration tool omits the

conversionTable property if the VAGen

contable=NONE.

location=xxxx

xxxx is one of the following:

v systemName

v EZELOC

location="xxxx"

xxxx is one of the following:

v systemName

v PROGRAMCONTROLLED

No special considerations.

336 Rational Software Development Platform: VisualAge Generator to EGL Migration Guide

Table 143. Linkage table options for :calllink (continued)

VisualAge Generator 4.5 EGL produced by the migration tool Migration tool considerations

remotecomtype=xxxx

xxxx is one of the following:

v appcims

v ca400

v cicsclient

v dce

v dcesecure

v direct

v exci

v ipc

v java400

v lu2

v tcpip

remoteComType="xxxx"

xxxx is one of the following:

v not supported

v not supported

v CICSECI

v not supported

v not supported

v DIRECT

v not supported

v DISTINCT

v JAVA400

v not supported

v TCPIP

The migration tool converts cicsclient

to CICSECI because that is the closest

corresponding EGL value. If the

VAGen :calllink entry did not already

specify the ctgport and ctglocation,

the migration tool issues an error

message to remind you to specify

these values.

The migration tool migrates the

values listed as not supported ″as is″

and issues a message. You must

determine what communications

protocol you want to use now and

then update the EGL CallLink entry

with the correct information. There

will be an error in the Problems view

until you correct the CallLink

information.

If you decide to use CICSSSL, you

must add the ctgPort, ctgLocation,

ctgKeyStore, and ctgKeyStorePassword

properties to the EGL CallLink

information.

If you decide to use CICSJ2C, you

must add the pgmName,

conversionTable, remotePgmType,

luwControl, remoteBind, location, and

parmForm properties to the EGL

CallLink information.

The migration tool migrates APPCIMS

″as is″ because it is not supported and

the values of other properties are

quite different. The best replacement

for APPCIMS is IMSTCP.

remoteapptype=xxxx

xxxx is one of the following:

v vg

v nonvg

v vgjava

v itf

remotePgmType="xxxx"

xxxx is one of the following:

v EGL

v EXTERNALLYDEFINED

v not applicable

v not supported

If the VisualAge Generator

remoteapptype=vgjava, the migration

tool migrates the :calllink entry, but

omits the remotePgmType property.

If remoteapptype=itf, the migration

tool turns the entire :calllink entry

into a comment.

serverid=serverName serverID=″serverName″ No special considerations.

luwcontrol=xxxx

xxxx is one of the following:

v client

v server

luwControl="xxxx"

xxxx is one of the following:

v CLIENT

v SERVER

No special considerations.

Appendix B. Relationship of VisualAge Generator and EGL Language Elements 337

Table 143. Linkage table options for :calllink (continued)

VisualAge Generator 4.5 EGL produced by the migration tool Migration tool considerations

remotebind=xxxx

xxxx is one of the following:

v generation

v runtime

remoteBind="xxxx"

xxxx is one of the following:

v GENERATION

v RUNTIME

No special considerations.

providerURL=URLName providerURL=″URLName″ No special considerations.

ctglocation=’tcpipInfo’ ctgLocation=″tcpipInfo″ No special considerations.

ctgport=portID ctgPort=″portID″ No special considerations.

bitmode=nn

nn is one of the following:

v 16

v 32

Not supported. The migration tool includes this

option as a comment.

binform=xxxx

xxxx is one of the following:

v intel

v host

Not supported. The migration tool includes this

option as a comment.

Not supported.

In VisualAge Generator, you

specify the NOMAPS option on a

CALL statement to achieve better

performance if the called

program does not send any maps

to the screen.

refreshScreen=″YES″ | ″NO″ The migration tool does not set this

property. If you previously specified

NOMAPS for a VAGen call statement,

you can continue to use the noRefresh

option on the EGL CALL statement if

you use the vagCompatibility=″YES″

build descriptor option. Alternatively,

you can obtain the same support by

specifying refreshScreen=″NO″ on the

CallLink entry for the called program.

Not used.

None of the communication

protocols supported by

VisualAge Generator required

this information.

ctgKeyStore

ctgKeyStorePassword

The migration tool does not set this

property. ctgKeyStore and

ctgKeyStorePassword are required if

you decide to use

remoteComType=″CICSSSL″.

Not used.

In VisualAge Generator, you use

the /system=JAVAWRAPPER

generation option whenever you

want to generate a Java wrapper

for a called batch program.

javaWrapper=″YES″ | ″NO″ The migration tool does not set this

property. You must specify

javaWrapper=″YES″ if you want a Java

wrapper to be generated whenever

you generate the called program.

fileLink

 Table 144. Linkage table options for :filelink

VisualAge Generator 4.5 EGL produced by the migration tool Migration tool considerations

:filelink fileLink No special considerations.

338 Rational Software Development Platform: VisualAge Generator to EGL Migration Guide

Table 144. Linkage table options for :filelink (continued)

VisualAge Generator 4.5 EGL produced by the migration tool Migration tool considerations

linktype=xxxx

xxxx is one of the following:

v local

v remote

In VisualAge Generator, the

default is local.

Type of file, where the EGL equivalent

options are as follows:

v localFile

v remoteFile

If the VAGen linktype is not specified,

the migration tool converts to localFile.

filename=fileName

fileName is the name of a file in a

VAGen record definition.

Wildcards are permitted.

fileName=″fileName″ No special considerations.

contable=xxxx

xxxx is one of the following:

v a conversionTableName

v *

v EZECONVT

v BINARY

conversionTable="xxxx"

xxxx is one of the following:

v conversionTableName

v *

v PROGRAMCONTROLLED

v not supported

The migration tool uses the same

conversionTableName when creating the

EGL FileLink information.

The migration tool migrates the

VAGen contable=BINARY to BINARY,

which is an unsupported value in

EGL. The migration tool also issues

an error message. There will be an

error in the Problems view. You must

correct the error by editing the .eglbld

file and selecting the supported value

that you want to use.

location=xxxx

xxxx is one of the following:

v CICS

v EZELOC

locationSpec="xxxx"

xxxx is one of the following:

v CICS

v PROGRAMCONTROLLED

No special considerations.

Crtxlink

 Table 145. Linkage table options for :crtxlink

VisualAge Generator 4.5 EGL produced by the migration tool Migration tool considerations

:crtxlink asynchLink No special considerations.

linktype=xxxx

xxxx is one of the following:

v local

v remote

Note: In VisualAge Generator the

default is local.

Type of invocation, where the EGL

equivalent options are the following:

v localAsynch

v remoteAsynch

If the VAGen linktype is not specified,

the migration tool converts to

localAsynch.

recdname=recordName

recordName is the name of a

VAGen record definition.

Wildcards are permitted.

recordName=″recordName″ No special considerations.

Appendix B. Relationship of VisualAge Generator and EGL Language Elements 339

Table 145. Linkage table options for :crtxlink (continued)

VisualAge Generator 4.5 EGL produced by the migration tool Migration tool considerations

contable=xxxx

xxxx is one of the following:

v a conversionTableName

v *

v EZECONVT

v BINARY

conversionTable="xxxx"

xxxx is one of the following:

v conversionTableName

v *

v PROGRAMCONTROLLED

v not supported

The migration tool uses the same

conversionTableName when creating the

EGL AsynchLink information.

The migration tool converts the

VAGen contable=BINARY to BINARY,

which is an unsupported value in

EGL. The migration tool also issues

an error message. There will be an

error in the Problems view. You must

correct the error by editing the .eglbld

file and selecting the supported value

that you want to use.

location=xxxx

xxxx is one of the following:

v CICS

v EZELOC

locationSpec="xxxx"

xxxx is one of the following:

v CICS

v PROGRAMCONTROLLED

No special considerations.

package=packageName package=″packageName″ No special considerations.

Dxfrlink

 Table 146. Linkage table options for :dxfrlink

VisualAge Generator 4.5 EGL produced by the migration tool Migration tool considerations

:dxfrlink transferToProgram No special considerations.

fromappl=programName

programName is the name of the

program that is transferring with

a DXFR to another program.

Wildcards are not permitted.

fromPgm=″programName″ No special considerations.

toappl=programName2

programName2 is the name of the

program to which the transfer is

occurring.

toPgm=″programName2″ No special considerations.

linktype=xxxx

xxxx is one of the following:

v dynamic

v static

v noncsp

linkType="xxxx"

xxxx is one of the following:

v DYNAMIC

v STATIC

v EXTERNALLYDEFINED

If you previously specified NONCSP

for a VAGen DXFR statement, you

can continue to use the

externallyDefined option on the EGL

transfer to program statement if you

include vagCompatibility=″YES″ in

your build descriptor options.

Alternatively, you can obtain the same

support by specifying linkType=

″EXTERNALLYDEFINED″ on the

transferToProgram entry for the

program to which you are

transferring.

340 Rational Software Development Platform: VisualAge Generator to EGL Migration Guide

Table 146. Linkage table options for :dxfrlink (continued)

VisualAge Generator 4.5 EGL produced by the migration tool Migration tool considerations

Not supported. alias=″applname″ If your VAGen program had to be

renamed because the name was an

EGL reserved word, you can use the

alias property either on the program

definition or in the linkage table to

provide the original VAGen name for

the program as the name of the

generated program. Either technique

can help you avoid having to modify

non-VAGen programs that transfer to

the VAGen program.

Resource association part

 Table 147. Resource association

VisualAge Generator 4.5 EGL produced by the migration tool Migration tool considerations

In VisualAge Generator, a

resource association part specifies

how a file is to be implemented

for a specific target environment.

The file is the File Name

specified in a VAGen record

definition.

The resource association part can

also specify how print output is

to be implemented for a specific

target environment.

When generating a program, the

fileName for each indexed, serial,

relative or print output is

matched to the resource

association part. The first entry

that matches based on the

fileName and generation target

environment is the entry that is

used for that file.

The EGL resource association part

specifies how a file is to be implemented

for a specific target environment. The file

is the fileName property that is specified

in an EGL record definition.

The resource association part can also

specify how print output is to be

implemented for a specific target

environment.

When generating a program, the

fileName for each indexed, serial,

relative or print output is matched to the

resource association part. The first entry

that matches based on the fileName and

generation target environment is the

entry that is used for that file.

No special considerations.

For VisualAge Generator, if you

generate C++, resource

association files are also used at

runtime.

For EGL, resource association

information is stored in EGL parts.

The migration tool includes support

for converting additional options that

were only valid in VAGen resource

association files.

file = fileName

 | EZEPRINT

fileName=″fileName″

 | ″printer″

No special considerations.

Appendix B. Relationship of VisualAge Generator and EGL Language Elements 341

Table 147. Resource association (continued)

VisualAge Generator 4.5 EGL produced by the migration tool Migration tool considerations

/system=targetSystem

targetSystem is one of the

following:

v AIX *

v AIXCICS *

v HP-UX *

v IMSBMP

v IMSVS

v LINUX **

v MVSBATCH

v MVSCICS

v NTCICS *

v OS2 *

v OS2CICS

v OS400

v SCO *

v SOLACICS *

v SOLARIS *

v TSO

v VMCMS

v VMBATCH

v VSEBATCH

v VSECICS

v WINNT **

Note:

v * — Indicates environments

used for C++ generation.

v ** — Indicates environments

used for Java generation.

v /system is optional.

v VisualAge Generator supports

an * as a wildcard in the target

system. (For example, MVS* or

*CICS).

This is the EGL target environment.

The corresponding environment values

are as follows:

v aix

v not supported

v hpux

v imsbmp

v imsvs

v linux

v zosbatch

v zoscics

v not supported

v not supported

v not supported

v iseriesc

v not supported

v not supported

v solaris

v not supported

v not supported

v not supported

v vsebatch

v vsecics

v win

Note: Wildcards are not supported.

The migration tool processes the

/system option as follows:

v For a target system that is listed as

not supported, the migration tool

includes the information for the

VAGen resource association entry

as a comment in the EGL resource

association part. This helps preserve

as much of your information as

possible.

v If the /system option is omitted

from the VAGen resource

association entry, the migration tool

uses any as the EGL resource

association target environment.

v If the /system option uses a

wildcard, the migration tool

migrates the option exactly as it is,

including the wildcard (for

example, mvs* or *cics). The

migration tool also issues an error

message.

342 Rational Software Development Platform: VisualAge Generator to EGL Migration Guide

Table 147. Resource association (continued)

VisualAge Generator 4.5 EGL produced by the migration tool Migration tool considerations

/filetype=fileType

fileType is one of the following:

v BTRIEVE

v GSAM

v IBMCOBOL

v MFCOBOL

v MMSGQ

v MQ

v OS2COBOL

v SEQ

v SEQRS

v SMSGQ

v SPOOL

v TEMPAUX

v TEMPMAIN

v TRANSIENT

v VSAM

v VSAMRS

The EGL file type, where the

corresponding values are in the

following list:

v not supported

v gsam

v ibmcobol

v not supported

v mmsgq

v mq

v not supported

v seq or seqws

v seqrs

v smsgq

v spool

v tempaux

v tempmain

v transient

v vsam

v vsamrs

The migration tool processes the

/filetype option as follows:

v If the /filetype option is omitted

from the VAGen resource

association entry, the migration tool

uses default as the EGL file type.

v If the /system option specifies a

host target environment, the

migration tool converts the VAGen

SEQ file type to the EGL seq file

type.

v If the /system option is a

workstaton environment, the

migration tool converts the VAGen

SEQ file type to the EGL seqws file

type.

v For unsupported file type values, if

the resource association is for a

/system that is supported, the

migration tool creates an EGL

resource association entry using the

VAGen file type and issues an error

message. There will also be an error

in the Problems view. You must fix

this error before you can use the

EGL resource association part.

/sysname=systemName systemName="systemName" The migration tool converts any

symbolic parameters that are used

within the /sysname option to the

corresponding EGL replacement

symbolic parameter.

/replace

/noreplace

replace="YES"

replace="NO"

No special considerations.

/dup

/nodup

duplicates="YES"

duplicates="NO"

Note: This is for ISERIESC.

No special considerations.

/commit

/nocommit

These options are only used for

the OS/400 target environment.

commit="YES"

commit="NO"

Note: This is for ISERIESC.

No special considerations.

/blksize=xxxx,yyyy,zzzz

In VisualAge Generator, this

option is only used for VSE

target environments.

blockSize="xxxx,yyyy,zzzz" No special considerations.

/sysnum=xxxx

In VisualAge Generator, this

option is only used for VSE

target environments.

systemNumber="xxxx" No special considerations.

Appendix B. Relationship of VisualAge Generator and EGL Language Elements 343

Table 147. Resource association (continued)

VisualAge Generator 4.5 EGL produced by the migration tool Migration tool considerations

/label

/nolabel

In VisualAge Generator, this

option is only used for VSE

target environments.

standardLabel="YES"

standardLabel="NO"

No special considerations.

/pcbno=n

This is only valid for IMSVS or

IMSBMP target environments or

for MVS Batch if the file type is

GSAM.

pcbName="pcbn" The migration tool converts the PCB

number to a name by concatenating

the literal pcb and the number.

/noff

There is no /FF option in

VisualAge Generator. This option

is only supported in VAGen

resource association files.

FormFeedOnClose="NO"

FormFeedOnClose="YES"

The migration tool converts /noff to

FormFeedOnClose=″NO″.

/text

There is no /NOTEXT option in

VisualAge Generator. This option

is only supported in VAGen

resource association files.

text="YES"

text="NO"

The migration tool converts /text to

text=″YES″.

/contable=xxxx

xxxx is one of the following:

v a conversionTableName

v EZECONVT

This option is only supported in

VAGen resource association files.

conversionTable="xxxx"

xxxx is one of the following:

v a conversionTableName

v PROGRAMCONTROLLED

The migration tool uses the same

conversionTableName when creating the

EGL resource association entry.

/keys=xxxx

In VisualAge Generator, this

option is only used with

/filetype=BTRIEVE. This option

is only supported in VAGen

resource association files.

KEYS="xxxx" Because BTRIEVE is used in

supported target environments, the

migration tool migrates the /keys

option to an EGL keys option.

/basename=xxxx

In VisualAge Generator, this

option is only used for the OS/2®

target environment. This option

is only supported in VAGen

resource association files.

Not supported. The migration tool comments out any

entry for the OS/2 target

environment.

344 Rational Software Development Platform: VisualAge Generator to EGL Migration Guide

Link edit part

 Table 148. Link edit part

VisualAge Generator 4.5 EGL produced by the migration tool Migration tool considerations

In VisualAge Generator, the link

edit part is typically named

programName.suffix, where the

first part of the name is the same

as the VAGen program name and

the suffix is LKG. The VAGen

/linkedit generation option

specifies the value for the suffix.

By default, in EGL the link edit part

name must be the same name as the

program name. If this is the case you do

not need to specify the linkedit build

descriptor option.

If you have multiple link edit parts for a

program, then you must use different

part names for the program’s linkedit

build descriptor option parts. In this

case, you must specify the complete link

edit part name in the linkedit build

descriptor option.

If the suffix is .LKG, the migration

tool removes the suffix when creating

the new EGL link edit part. If the

suffix is anything other than .LKG,

the migration changes .suffix to _suffix

because periods (.) are not valid

characters in EGL part names.

A VAGen link edit part contains

the link edit statements needed

for linkediting a program during

the preparation process in a host

environment.

In EGL, a link edit part contains the link

edit statements needed for linkediting a

program during the build process in a

host environment.

The migration tool does the following:

v Converts any symbolic parameters

that are used within the link edit

part to the corresponding EGL

replacement symbolic parameter.

v Uses the same indentation as in the

VAGen part.

Bind control part

 Table 149. Bind control part

VisualAge Generator 4.5 EGL produced by the migration tool Migration tool considerations

In VisualAge Generator, the bind

control part is typically named

programName.suffix, where the

first part of the name is the same

as the VAGen program name and

the suffix is BND. The VAGen

/bind generation option specifies

the value for the suffix.

By default, in EGL the bind control part

name must be the same name as the

program name. If this is the case you do

not need to specify the bind control

build descriptor option.

If you have multiple bind control parts

for a program, then you must use

different part names for the program’s

bind control parts. In this case, you must

specify the complete bind control part

name in the bind build descriptor

option.

If the suffix is .BND, the migration

tool removes the suffix when creating

the new EGL bind control part. If the

suffix is anything other than .BND,

the migration changes .suffix to _suffix

because periods (.) are not valid

characters in EGL part names.

A VAGen bind control part

contains the DB2 bind commands

needed for binding the DB2

DataBase Resource Module

(DBRM) for a program during

the preparation process in an

MVS host environment.

In EGL, a bind control part contains the

bind commands needed for binding the

DBRM for a program during the build

process in a z/OS host environment.

The migration tool does the following:

v Adds additional commands at the

beginning of the bind control part.

These commands are needed by the

build server.

v Converts any symbolic parameters

that are used within the bind

control part to the corresponding

EGL replacement symbolic

parameter.

v Uses the same indentation as in the

VAGen part.

Appendix B. Relationship of VisualAge Generator and EGL Language Elements 345

Symbolic parameters

The following tables show the relation between VAGen symbolic parameters and

EGL symbolic parameters.

 Table 150. Part-related symbolic parameters

Part-related symbolic parameters Corresponding EGL symbolic parameter

EZECOBOLTYPE Not supported

EZEDATA DATA

EZEDBCS Not supported

EZEDESTLIB Not supported

EZEDESTNAME Not supported

EZEDLI EZEDLI — DL/I only

EZEENTRY Not supported

EZEENV SYSTEM

EZEGDATE EZEGDATE

EZEGENOUT Not supported

EZEGMBR EZEGMBR

EZEGTIME EZEGTIME

EZEJOB Not supported

EZEMBR In a JCL script, linkedit, or bind part, EZEALIAS. Otherwise, EZEMBR

EZEMBRPATH Not supported

EZEMSG Not supported

EZENLS EZENLS

EZEPID EZEPID

EZEPREPDESTACCOUNT Not supported

EZEPREPDESTHOST Not supported

EZEPREPDESTDIR Not supported

EZEPREPDESTPASSWORD Not supported

EZEPREPDESTUID EZEDESTUSERID

EZEPREPFTPCMDSBCS Not supported

EZEPREPFTPCMDBCS Not supported

EZEPREPSENDCMDDBCS Not supported

EZEPREPSESSION Not supported

EZEPREPSP Not supported

EZEPREPSQLDB Not supported

EZEPREPWORKDB Not supported

EZEPSB Not supported — DL/I and IMS only

EZEPTYPE Not supported

EZESQL EZESQL

EZETBLNAME Not supported

EZETPROC Not supported

EZETRAN Not supported

346 Rational Software Development Platform: VisualAge Generator to EGL Migration Guide

Table 150. Part-related symbolic parameters (continued)

Part-related symbolic parameters Corresponding EGL symbolic parameter

EZETRANSFERTYPE Not supported

EZETRO Not supported

EZETWASIZE Not supported

EZEUSERID Not supported

EZEVMLOADLIB Not applicable — VM only

EZEVSELIB EZEVSELIB — VSE only

EZEXAPP Not supported.

 Table 151. File-related symbolic parameters

File-related symbolic parameters Corresponding EGL symbolic parameter

EZEBLK EZEBLK

EZEDBD Not supported

EZEDD EZEDD

EZEDLBL EZEDLBL — VSE only

EZEDSN EZEDSN

EZELRECL EZELRECL

EZERECFM EZERECFM

 Table 152. User-defined symbolic parameters

User-defined symbolic parameters Corresponding EGL symbolic parameter

COB2LIB COBCICS

COBLIST Not supported

DBDLIB DBDLIB — DL/I only

DSNLOAD DSNLOAD

DSYS DSYS

ELA ELA

EZALTXTR Special migration to normal build option—see Generation Options

section, transferErrorTransaction=″xxx″

EZONEAS2 Special migration to normal build option -- See Generation Options

section, oneFormItemCopybook=″YES″

EZUAUTH EZUAUTH

EZUINST EZUINST

PSBLIB PSBLIB — DL/I only

PROCLIB PROCLIB -- VSE only

PWRCLASS PWRCLASS -- VSE only

RESLIB RESLIB — DL/I and IMS only

SQLDBNAM SQLDBNAM — VSE only

SQLPKGNM SQLPKGNM — VSE only

SQLPROPT SQLPROPT — VSE only

SQLSTMDE SQLSTMDE — VSE only

SQLSTOPT SQLSTOPT — VSE only

Appendix B. Relationship of VisualAge Generator and EGL Language Elements 347

Table 152. User-defined symbolic parameters (continued)

User-defined symbolic parameters Corresponding EGL symbolic parameter

SQLUSRPW SQLUSRPW — VSE only

VMFMODE Not applicable — VM only

VMDISKADDR Not applicable — VM only

VUSERLIB VUSERLIB — VSE only

Other generation information

This section is organized in the following tables:

v MVS preparation templates and procedures, Table 153 on page 348

v MVS runtime templates, Table 154 on page 350

v MVS file and database allocation templates, Table 155 on page 351

v MVS file and database allocation placeholder templates, Table 156 on page 351

v OS/400 runtime templates, Table 157 on page 351

Preparation templates and procedures

Table 153 shows the VAGen preparation templates and procedures used for

preparing the outputs of COBOL generation for the MVS runtime environments.

The table only includes the MVS runtime environments that have a corresponding

EGL z/OS runtime environment. The template name is shown first, followed by

the procedure name. For most of the procedure names, the first 3 characters are

ELA and the remaining characters indicate the steps included in the procedure as

follows: P (DB2 precompile), T (CICS translate), C (COBOL compile), L (link edit),

and B (DB2 bind).

Note:

v For the MVS runtime environments, VisualAge Generator also uses bind

control templates. See “Establishing a bind control part to use as a

template” on page 190 for details of how to convert the bind control

templates.

v VSE CICS and VSE Batch are not included in the following table because

the VisualAge Generator EGL Plug-in for VSE, which provides COBOL

generation for VSE, uses the same preparation process as VisualAge

Generator. However, the template and procedure names have changed.

Refer to the VisualAge Generator EGL Plug-in for VSE Reference for the

correspondence between the VAGen and EGL template names.

v OS/400 is not included in the following table because the EGL build

script FDAPREP replaces all of the VAGen OS/400 preparation templates.

Comments in the FDAPREP build script indicate which VAGen

preparation template formed the basis for that section of the build script.

 Table 153. MVS preparation templates and procedures

Environment

Part type and

database

VisualAge Generator

template and

procedure EGL build script

MVS CICS Program - without

DB2

EFK2MPCB ELATCL FDATCL

Program - with DB2 EFK2MPCA

ELAPTCLB

FDAPTCL followed

by FDABIND

348 Rational Software Development Platform: VisualAge Generator to EGL Migration Guide

Table 153. MVS preparation templates and procedures (continued)

Environment

Part type and

database

VisualAge Generator

template and

procedure EGL build script

Map Group - print

services

EFK2MMCA ELACL FDACL

Map Group - format

module

EFK2MMTF ELAL FDALINK

MVS Batch Program - without

DB2

EFK2MPBA ELACL FDABCL

Program - with both

DL/I and DB2

EFK2MPBB

ELAPCLB

FDAPCL followed by

FDABIND

Program - with DB2

only

EFK2MPBC

ELAPCLB

FDAPCL followed by

FDABIND

Map Group - print

services

EFK2MMCA ELACL FDACL

IMS/VS Program - with DL/I

only

EFK2MPIC ELACL FDACL

Program - with DL/I

and a DB2 work

database

EFK2MPID ELACLB FDACL followed by

FDABIND

Program - with both

DL/I and DB2

EFK2MPIE ELAPCLB FDAPCL followed by

FDABIND

Map Group - print

services for MFS

EFK2MMCB ELACL FDACL

Map Group - MFS,

with /mfstest

generation option

EFK2MMST

MFSTEST

FDAMFS

Map Group - MFS,

with /nomfstest

generation option

EFK2MMSU

MFSUTL

FDAMFS

IMS BMP Program - with DL/I

only

EFK2MPIA ELACL FDABCL

Program - with both

DL/I and DB2

EFK2MPIB ELAPCLB FDAPCL followed by

FDABIND

Map Group - print

services for SEQ and

GSAM

EFK2MMCA ELACL FDACL

Map Group - print

services for MFS

EFK2MMCB ELACL FDACL

Map Group - MFS,

with /mfstest

generation option

EFK2MMST

MFSTEST

FDAMFS

Map Group - MFS,

with /nomfstest

generation option

EFK2MMSU

MFSUTL

FDAMFS

Appendix B. Relationship of VisualAge Generator and EGL Language Elements 349

Table 153. MVS preparation templates and procedures (continued)

Environment

Part type and

database

VisualAge Generator

template and

procedure EGL build script

All MVS

environments

Relink program EFK2MPRE

ELARLINK

FDALINK

Table EFK2MMCA ELACL FDACL

Runtime templates

Table 154 shows the VAGen runtime templates that are used to generate the basic

runtime JCL for the MVS Batch and IMS BMP environments. Table 155 shows the

file and database allocation templates that are used to create DD statements within

the generated runtime JCL. Table 156 shows the file and database allocation

placeholder templates that are used to indicate that additional DD statements

might be required for another program that is called or transferred to with an

XFER or DXFR statement or for a program that uses EZEDEST or EZEDESTP.

Table 157 shows the VAGen runtime templates that are used to generate the control

language (CL) for the OS/400 environment. All 4 tables include the corresponding

VAGen and EGL information.

Note: VSE Batch is not included in the tables because the VisualAge Generator

EGL Plug-in for VSE, which provides COBOL generation for VSE, uses

similar templates to VisualAge Generator. However, the template names

have changed. Refer to the VisualAge Generator EGL Plug-in for VSE Reference

for the correspondence between the VAGen and EGL template names.

 Table 154. MVS runtime templates

Environment

Program type and

database

VisualAge Generator

runtime JCL

template

EGL runtime JCL

template

MVS Batch Called program EFK2MEBA fda2meba.tpl

Main program - No

databases

EFK2MEBE fda2mebe.tpl

Main program - DL/I

only

EFK2MEBC fda2mebc.tpl

Main program - DB2

only

EFK2MEBD fda2mebd.tpl

Main program - DL/I

and DB2

EKF2MEBB fda2mebb.tpl

IMS BMP Called program EFK2MEBA fda2meba.tpl

Main program - DL/I

only

EFK2MEIB fda2meib.tpl

Main program - DL/I

and DB2

EFK2MEIA fda2meia.tpl

350 Rational Software Development Platform: VisualAge Generator to EGL Migration Guide

Table 155. MVS file and database allocation templates

Environment File or database type

VisualAge Generator

runtime JCL

template

EGL runtime JCL

template

MVS Batch and IMS

BMP

DL/I database in

MVS Batch

EFK2MDLI fda2mdli.tpl

VSAM or VSAMRS

input for serial,

indexed, or relative

files

EFK2MVSI fda2mvsi.tpl

VSAM or VSAMRS

output for serial,

indexed, or relative

files

EFK2MVSO fda2mvso.tpl

SEQ or SEQRS input

for serial files

EFK2MSDI fda2msdi.tpl

SEQ or SEQRS

output for serial files

EFK2MSDO fda2msdo.tpl

GSAM input for

serial files

EFK2MGSI fda2mgsi.tpl

GSAM output for

serial files

EFK2MGSO fda2mgso.tpl

GSAM file in an IMS

BMP

EFK2MIMS fda2mims.tpl

 Table 156. MVS file and database allocation placeholder templates

Environment

File and database

allocation

placeholder type

VisualAge Generator

runtime JCL

template

EGL runtime JCL

template

MVS Batch and IMS

BMP

XFER or DXFR to

EZEAPP

EFK2MEZA fda2meza.tpl

CALL, XFER or

DXFR to a specific

application or RT

generation option

transfers to a specific

application

EFK2MCAL fda2mcal.tpl

Application uses

EZEDEST or

EZEDESTP

EFK2MEZD fda2mezd.tpl

 Table 157. OS/400 runtime templates

Environment Purpose of template

VisualAge Generator

runtime template

EGL runtime JCL

template

OS/400 Provides the CL to

add libraries to the

client/server job and

to start commitment

control if this is the

first server program

called by a client

EFK24EBC fda24ebc.tpl

Appendix B. Relationship of VisualAge Generator and EGL Language Elements 351

Table 157. OS/400 runtime templates (continued)

Environment Purpose of template

VisualAge Generator

runtime template

EGL runtime JCL

template

Provides epilogue to

the runtime CL to

handle errors that

occur

EFK24EEC fda24eec.tpl

Other runtime information

This section is organized in the following tables:

v Runtime environment variables, Table 158 on page 352

v vgj.properties, Table 159 on page 354

Runtime environment variables

The VAGen runtime environment variables are used for generated COBOL for

CICS OS/2 and for generated C++ for the workstation environments. Most VAGen

runtime environment variables do not have a corresponding EGL runtime property.

Even when there is a correspondence, the values for the EGL runtime properties

have different values or slightly different meanings. In addition, there are

numerous new EGL runtime properties. Therefore, use the material in this section

as an aid in creating your EGL runtime properties, but be sure to carefully review

all the EGL runtime properties in the online helps to determine if there are

additional properties you need to set.

 Table 158. Runtime environment variables

VAGen runtime environment variables EGL runtime properties

BTRINTF Not used -- CICS OS/2 only

CICSCOBCOPY Not used -- CICS OS/2 only

CICSRGRP Not used -- CICS OS/2 only

CICSCOBOL Not used -- CICS OS/2 only

CICSRD Not used -- CICS OS/2 only

CICSWRK Not used -- CICS OS/2 only

COBPATH Not used -- CICS OS/2 only

CSODIR Not used

CSO_DUMP_CONV Not used

CSO_DUMP_DATA Not used

CSOTIMEOUT (time in seconds) cso.cicsj2c.timeout (time in milliseconds)

CSOTROPT tcpiplistener.trace.flag or vgj.trace.type,

depending on what you need to trace

CSOTROUT tcpiplistener.trace.file or

vgj.trace.device.spec, depending on what

you need to trace

DB2INSTANCE Not used

DLITROPT Not supported -- remote DL/I only

DLITROUT Not supported -- remote DL/I only

DPATH Not used

ELAPATH Not used

352 Rational Software Development Platform: VisualAge Generator to EGL Migration Guide

Table 158. Runtime environment variables (continued)

VAGen runtime environment variables EGL runtime properties

ELARTRDB_tttt where tttt is the CICS

transaction code

Not used -- CICS OS/2 only

EZERGRGL_xxx where xxx is the NLS

language code

vgj.datemask.gregorian.long.locale

EZERGRGS_xxx where xxx is the NLS

language code

vgj.datemask.gregorian.short.locale

EZERJULL_xxx where xxx is the NLS

language code

vgj.datemask.julian.long.locale

EZERJULS_xxx where xxx is the NLS

language code

vgj.datemask.julian.short.locale

EZERNLS vgj.nls.code

EZERSQLDATE Not supported -- EGL uses JDBC

EZERSQLDB vgj.jdbc.database.SN, where SN is the server

name; format of the value differs from

EZERSQLDB

EZERSQLM1 Not supported -- EGL uses JDBC

EZERSQLM2 Not used -- EGL uses JDBC

EZERSQLMF Not used -- EGL uses JDBC

EZERSQLUS Not supported -- EGL uses JDBC

FCEOPT Not used -- C++ generation only

FCETROPT Not used -- C++ generation only

FCWCOMP Not used -- C++ generation only

FCWDB2DIR Not used -- EGL uses JDBC

FCWDBNAME_programName vgj.jdbc.default.database.programName;

format of the value differs from

FCWDBNAME

FCWDBNOOP Not used -- distributed CICS only

FCWDBPASSWORD vgj.jdbc.default.password

FCWDBUSER vgj.jdbc.default.userid

FCWDBVERSION (Oracle version) Not used -- EGL uses JDBC

FCWDPATH (directory for tables and

resource association)

Not used. Tables must be in the classpath.

Resource association becomes vgj.ra.*

properties

FCWFIODB Not used -- distributed CICS only

FCWLIBPATH Not used -- C++ generation only

FCWMAKE Not used -- C++ generation only

FCWRSC (raf file name) Not used. Resource association becomes

vgj.ra.* properties

FCWOPT (map field with date mask) Not supported

FCWTRDB_tttt where tttt is the CICS

transaction code

Not used -- distributed CICS only

FCWTROPT vgj.trace.type; values and meanings differ

from FCWTROPT

Appendix B. Relationship of VisualAge Generator and EGL Language Elements 353

Table 158. Runtime environment variables (continued)

VAGen runtime environment variables EGL runtime properties

FCWTROUT vgj.trace.device.spec; must also specify

vg.trace.device.option=2

INFORMIXDIR Not supported -- ODBC only

MDLROOT Not supported -- VAGen Templates only

ORACLE_HOME Not used -- EGL uses JDBC

RMTDLI_PARTNER_LU Not supported -- remote DL/I on MVS only

RMTDLI_PARTNER_TP Not supported -- remote DL/I on MVS only

RMTDLI_SERVER_ENV Not supported -- remote DL/I on MVS only

VSEDLI_CFG Not supported -- remote DL/I on VSE only

VSEDLI_TRACE Not supported -- remote DL/I on VSE only

vgj.properties

The VAGen vgj.properties file is used for Java generation for the workstation

environments. Most VAGen vgj.properties variables have a corresponding EGL

runtime property. However, in some cases, the values for the EGL runtime

properties have different values or slightly different meanings. In addition, there

are numerous new EGL runtime properties. Therefore, use the material in this

section as an aid in creating your EGL runtime properties, but be sure to carefully

review all the EGL runtime properties in the online helps to determine if there are

additional properties you need to set.

 Table 159. vgj.properties

VAGen vgj.properties EGL runtime properties

cso.application.xxx where xxx is the server

group

Not used -- EGL uses a linkage properties

file

cso.linkagetable.xxx where xxx is the linkage

table name

cso.linkageOptions.LO, where LO is the

linkage options part name and the

corresponding linkage properties file is

named LO.properties

cso.serverLinkage.xxx.yyy where xxx is the

server group and yyy is the attribute name.

Not used -- EGL uses a linkage properties

file

vgj.datemask.gregorian.long.xxx where xxx is

the NLS language code

vgj.datemask.gregorian.long.locale

vgj.datemask.julian.long.xxx where xxx is the

NLS language code

vgj.datemask.julian.long.locale

vgj.java.command vgj.java.command

vgj.jdbc.database.SN where SN is the server

name

vgj.jdbc.database.SN where SN is the server

name; format of the value differs from

EZERSQLDB

vgj.jdbc.default.database vgj.jdbc.default.database or

vgj.jdbc.default.database.programName

vgj.jdbc.default.database.user.id vgj.jdbc.default.userid

vgj.jdbc.default.database.user.password vgj.jdbc.default.password

vgj.jdbc.drivers vgj.jdbc.drivers

vgj.nls.code vgj.nls.code

354 Rational Software Development Platform: VisualAge Generator to EGL Migration Guide

Table 159. vgj.properties (continued)

vgj.nls.number.decimal vgj.nls.number.decimal

vgj.powerserver.location Not used

vgj.ra.FN.contable where FN is the logical

file name

vgj.ra.QN.conversionTable, where QN is the

MQ Series message queue name; not all of

the VAGen values are valid

vgj.ra.FN.filetype vgj.ra.FN.fileType

vgj.ra.FN.replace vgj.ra.FN.replace

vgj.ra.FN.sysname vgj.ra.FN.sysname

vgj.ra.FN.text vgj.ra.FN.text

vgj.trace.device.option vgj.trace.device.option

vgj.trace.device.spec vgj.trace.device.spec

vgj.trace.type vgj.trace.type; values and meanings differ

from FCWTROPT

Appendix B. Relationship of VisualAge Generator and EGL Language Elements 355

356 Rational Software Development Platform: VisualAge Generator to EGL Migration Guide

Appendix C. Messages from the migration tools

This section contains the messages that are issued by the migration tools. You can

find the messages based on their prefix in the following sections:

v HPT.EGL.00xxx - Stage 1 Common Messages

v HPT.EGL.01xxx - Stage 1 on VisualAge for Java

v HPT.EGL.02xxx - Stage 1 on VisualAge Smalltalk

v IWN.MIG - Stages 2 and 3 in EGL

The character in the last position of each message number is a suffix that indicates

the severity of the message:

v i — Informational message to indicate status or that the migration tool

eliminated information during migration due to the differences between the

VisualAge Generator and EGL languages. No user action is required.

v w — Warning message to indicate a possible problem. For example, the

migration tool made a best guess for the EGL syntax. User action is only

required if validation or generation detects an error.

v e — Error message. The migration tool was unable to make a reasonable guess

for the EGL syntax. User action is required to provide missing or incomplete

information.

v t - Trace message to indicate more detailed status than is provided by the

informational messages. The trace message include details about when commit

points are taken. The trace messages are self-explanatory and are not included in

this migration guide.

Messages from the VisualAge Generator to EGL migration tool—Stage

1

The Stage 1 migration tools are shipped as samples. The messages are not

translated within the sample tool itself. However, the messages as shipped with

the samples are translated here in the Migration Guide.

Stage 1 common messages

The following messages are common to the VAGen migration tool on both

VisualAge for Java and VisualAge Smalltalk

HPT.CM.215.e File filename cannot be opened. The

return code is returnCode (returnCodeText).

Explanation: The specified file cannot be opened. The

returnCode and returnCodeText indicate the reason why.

returnCode 2 indicates the file cannot be found.

User response: Provide a valid file for the migration

tool.

HPT.EGL.0001.w Table name tableName is a reserved

word. It must be renamed.

Explanation: The migration tool does not rename

tables for you.

User response: You must change the name of the table

and all references to it, including references in any

program’s table and additional records list, logic

statements, data item edit routines, map edit routines,

and UI edit tables. Be sure to change any non-VAGen

references to the dataTable name, including CICS

program definitions. Alternatively, you can wait until

you have migrated, rename the dataTable in EGL, and

use the EGL alias property to specify the original table

name.

HPT.EGL.0002.w Map group name mapGroupName is

a reserved word. It must be renamed.

© Copyright IBM Corp. 2004, 2006 357

Explanation: The migration tool does not rename map

groups for you.

User response: You must change the name of the map

group, the names of all maps in the map group, and all

references to the map group, including references as

any program’s map group or help map group. Be sure

to change any non-VAGen references to the map group

name, including CICS program definitions.

Alternatively, you can wait until you have migrated,

rename the formGroup in EGL, and use the EGL alias

property to specify the original map group name.

HPT.EGL.0003.w Program name programName is a

reserved word. It must be renamed.

Explanation: The migration tool does not rename

programs for you.

User response: You must change the name of the

program and all references to it, including references on

CALL, DXFR, and XFER statements and references in

linkage table parts. Also change the names of any bind

control or linkedit parts that correspond to this

program. Be sure to change any non-VAGen references

to the program name, including CICS program

definitions. Alternatively, you can wait until you have

migrated, rename the program in EGL, and use the

EGL alias property to specify the original program

name.

HPT.EGL.0004.w Control part name partName is a

reserved word. It must be renamed.

Explanation: The specified control part name uses dot

notation, where the name before the dot is a reserved

word. The migration tool assumes that the name before

the dot is a program name and that this control part is

closely tied to a program. Because the migration tool

does not rename programs, it also does not rename

control parts that are in dot notation.

User response: You must change the name of the

program and all references to it, including references on

CALL, DXFR, and XFER statements and references in

linkage table parts. Also change the names of any bind

control or linkedit parts that correspond to this

program. Be sure to change any non-VAGen references

to the program name, including CICS program

definitions. Alternatively, you can wait until you have

migrated, rename the program in EGL, and use the

EGL alias property to specify the original program

name. Refer to Appendix Appendix A, “Reserved

words,” on page 221 that lists the EGL reserved words.

HPT.EGL.0005.w UI Record recordName is a reserved

word or starts with the # or @ symbol. It

must be renamed.

Explanation: The Stage 1 migration tool does not

rename UI records for you. However, the Stage 2 tool

renames the record using your Stage 2 Renaming

prefix. The Stage 2 tool also includes the alias property

for the VGUI record so that the names in the EGL

generated outputs are identical to those in VisualAge

Generator. The Stage 3 tool also renames the file that

contains the VGUI record. If you migrate in single file

mode, the migration tool makes the same changes.

User response: None. The recommended approach is

to allow the Stage 2 migration tool to rename the

record for you. This also changes all references to the

record and the file name.

HPT.EGL.0006.i Migration of preferenceFile will

produce outputList.

Explanation: Migration of preferenceFile will produce

outputList. Possible outputs are migration plans, report,

and database updates.

User response: None.

HPT.EGL.0007.w No migration files were created

based on the current filters.

Explanation: No migration files were created based on

the current filters.

User response: Change the filter preferences.

HPT.EGL.0008.e PreferenceValue is an invalid value for

preference option preferenceOption.

Explanation: The value is invalid for the preference

option.

User response: Changes the preference option value in

the preferences file.

HPT.EGL.0009.e Migration set migrationSetName

requires the preferences for the

spanning maps suffixes be specified.

Explanation: The specified migration set contains one

or more map groups that span multiple projects or

multiple packages. The migration tool requires you to

specify the spanning maps suffix preferences so that it

can create the project or package necessary for the map

group.

User response: Edit the Stage 1 migration preferences

file. On the Mapping page, in the Spanning Maps

section, specify values for the Project suffix and

Package suffix fields. See “Mapping page” on page 119

for Java or “Mapping page” on page 139 for Smalltalk

for more details.

HPT.EGL.0010.w No migration action was requested.

Explanation: You have not selected any output

options for the Stage 1 migration tool.

User response: Select one or more options. The

options enable you to create a migration plan file,

358 Rational Software Development Platform: VisualAge Generator to EGL Migration Guide

create a report, or update the database.

HPT.EGL.0011.i Starting the database clean up of

migration set migrationSetName.

Explanation: The migration database already

contained information for the specified migration set.

The migration tool deleted the migration set

information in preparation for running Stage 1 with a

new set of preferences.

User response: None.

HPT.EGL.0012.i Completed the database clean up of

migration set migrationSetName.

Explanation: The migration database already

contained information for the specified migration set.

The migration tool deleted the migration set

information in preparation for running Stage 1 with a

new set of preferences.

User response: None.

HPT.EGL.0013.e Each renaming rule must have a

unique order value.

Explanation: Two or more renaming rules have the

same order number.

User response: Edit the Stage 1 migration preferences

file and change the renaming rules so that each rule

has a unique order number.

HPT.EGL.0014.i Migration set migrationSetName-
migrationSetVersion produced n error

messages, n warning messages, and n

informational messages.

Explanation: n is the number of messages issued by

the Stage 1 migration tool for the specified migration

set. The count for the informational messages includes

message HPT.EGL.0014.i.

User response: None.

HPT.EGL.0015.e Derived EGL project name

eglProjectName contains invalid

character(s): characterList. Modify the

renaming rules.

Explanation: Using the renaming rules that you

specified, the Stage 1 migration tool has created a

proposed EGL project name that does not meet the

EGL project naming conventions. The characters that

are invalid shown in the characterList.

User response: Edit the Stage 1 migration preferences

file and modify the project renaming rules so that they

result in valid EGL project names. When you modify

the renaming rules, be sure to consider the effect of any

renaming rules that specify a Mapping Context of both.

HPT.EGL.0016.e Derived EGL package name

eglPackageName contains invalid

character(s): characterList. Modify the

renaming rules.

Explanation: Using the renaming rules that you

specified, the migration tool has created a proposed

EGL package name that does not meet the EGL

package naming conventions. The characters that are

invalid shown in the characterList.

User response: Edit the Stage 1 migration preferences

file and modify your package renaming rules so that

they result in valid EGL package names. When you

modify the renaming rules, be sure to consider the

effect of any renaming rules that specify a Mapping

Context of both.

HPT.EGL.0017.e Derived EGL project name

eglProjectName cannot end with a period

(.). Modify the renaming rules.

Explanation: Using the renaming rules that you

specified, the migration tool has created a proposed

EGL project name that ends in a period. This name

does not meet the EGL project naming conventions.

User response: Edit the Stage 1 migration preferences

file and modify your project renaming rules so that

they result in valid EGL project names. When you

modify the renaming rules, be sure to consider the

effect of any renaming rules that specify a Mapping

Context of both. Also consider the effect of any

renaming rules that specify a String Context of any, back

or token.

HPT.EGL.0018.e Derived EGL package name

eglPackageName cannot begin with a digit

or end with a period (.). Modify the

renaming rules.

Explanation: Using the renaming rules that you

specified, the migration tool has created a proposed

EGL package name that ends in a period or begins with

a digit. This name does not meet the EGL package

naming conventions.

User response: Edit the Stage 1 migration preferences

file and modify your package renaming rules so that

they result in valid EGL package names. When you

modify the renaming rules, be sure to consider the

effect of any renaming rules that specify a Mapping

Context of both.

HPT.EGL.0019.i The Migration Feature featureName

versionName is loaded.

Explanation: This informational message provides the

migration feature name and version that is currently

loaded into your Java workspace or Smalltalk image.

For VAGen on Java, the message is repeated to provide

information about the VAGen Utilities feature. For both

Appendix C. Messages from the migration tools 359

VAGen on Java and VAGen on Smalltalk, the message

is repeated to provide the version of the reserved word

list that is loaded

User response: None.

HPT.EGL.0020.i The Migration Feature featureName

versionName is not loaded. listOfNames

are not loaded.

Explanation: This informational message provides the

migration feature name and version that should be

added to your Java workspace or loaded into your

Smalltalk image. However, one or more Java packages

or Smalltalk applications are not at the version

expected for the migration feature. The listOfNames

provides the list of Java packages or Smalltalk

applications that are currently loaded but which are not

at the expected version.

User response: If you have not modified the Stage 1

migration tool, try adding the migration feature again

for Java or loading the migration feature again for

Smalltalk. If you have modified the Stage 1 migration

tool, then this message serves as a reminder of the Java

packages or Smalltalk applications that you have

modified.

HPT.EGL.0021.e The Externalized EGL Reserved

Word List cannot be loaded. Verify

fileName.

Explanation: The specified fileName cannot be found.

The fileName is the full path name of the file. The file

should have the correct name and location if you

installed the Stage 1 migration tool as described in

Chapter 4, “Stage 1 — Extracting from Java,” on page

115 or Chapter 5, “Stage 1 — Extracting from

Smalltalk,” on page 135.

User response: Verify that the EGL Reserved Word file

is located in the correct path and has the correct file

name. If not, check your installation steps for the Stage

1 migration tool.

HPT.EGL.0022.e Part partName has invalid External

Source Format.

Explanation: The Stage 1 migration tool has made 3

attempts to extract the External Source Format from the

repository. However, the opening tag and ending tag

for the part are not a valid pair (for example, :record

and :erecord). The Stage 1 migration tool continues

processing. However, the migration database does not

contain correct External Source Format for the specified

partName.

User response: Try looking at the External Source

Format in the repository to see if there are any obvious

errors in the part. If you are using a remote repository,

try copying it to a local drive and running the Stage 1

migration tool again. If you are unable to resolve the

problem, contact IBM support.

HPT.EGL.0023.e Part partName has invalid External

Source Format due to duplicate parts.

Explanation: One or more parts of the same part type

have the same part name. The migration tool cannot

determine which External Source Format to store in the

migration database.

User response: Modify your migration set so that

there are no duplicate part names in the migration set.

HPT.EGL.0024.e Derived map group name

mapGroupName is the same as the name

of another part.

Explanation: VisualAge Generator only requires a

map group part if there is a floating area specification.

EGL always requires a form group part. The Stage 1

migration tool attempted to create a map group part

using the map group portion of the map names.

However, the map group name is the same as one of

the other parts in the migration set. The Stage 1

migration tool ends the processing without modifying

the migration database.

User response: Change the names of the maps so that

the map group portion of the name does not conflict

with any of the other parts in the migration set. Also

change any programs that use the map group to

specify the new map group name. Run Stage 1 again.

Stage 1 on VisualAge for Java

The following messages occur only in the VisualAge for Java version of the

VisualAge Generator to EGL migration tool.

HPT.EGL.0101.e Current package name

vagenPackageName - results in EGL

package name eglPackageName, which

starts with # or @ or uses reserved

word(s) reservedWordList. It must be

renamed.

Explanation: EGL reserved words cannot be used as

any word in the dot notation for EGL package names.

User response: Use the Stage 1 renaming rules to

create an EGL package name that does not violate the

EGL naming restrictions. Refer to Appendix

Appendix A, “Reserved words,” on page 221 that lists

the EGL reserved words. Be sure that the resulting EGL

package name does not start with the # or @ symbol.

360 Rational Software Development Platform: VisualAge Generator to EGL Migration Guide

HPT.EGL.0102.e Migration Set migrationSetName -

migrationSetVersion references version

projectVersion1 and projectVersion2 of

project projectName. The migration set

was not created.

Explanation: The migration tool expanded the

high-level PLP project for the specified migration set

version. The expanded high-level PLP project contains

multiple versions of the same project name. Migration

cannot continue.

User response: If you are using PLP projects, modify

the high-level PLP project and any lower-level PLP

projects that it references so that only one version of

each project is included in the PLP chain. If you created

the migration plan file by hand, modify the migration

plan file so that only one version of each project is

specified for the migration set.

HPT.EGL.0103.e An error occurred while loading the

database driver. driver: driverName.

Please check to ensure that the

db2java.zip file is in the classpath.

Explanation: The database driver that is specified in

the Stage 1 preferences file could not be found.

User response: Modify the Stage 1 preferences file to

point to the correct driver name and location.

HPT.EGL.0104.e An error occurred while connecting

to the database. database: databaseName.

Explanation: The Stage 1 migration tool was not able

to connect to the migration database.

User response: Make sure that the specified database

has been created. Also review your user ID and

password settings in the Stage 1 preferences file to

ensure that they are correct.

HPT.EGL.0105.e Error occurred when closing the

database connection.

Explanation: The Stage 1 migration tool was not able

to close the connection to the migration database.

User response: The Stage 1 migration tool does any

commits before it tries to close the database connection.

You should be able to shut down VisualAge Generator

to force the connection to close.

HPT.EGL.0106.e Error accessing repository in method

methodName.

Explanation: The specified method for the Stage 1

migration tool was not able to access the repository.

User response: Verify that your repository is accessible

and that there are no network problems if you are

using a remote repository. Then try migrating again.

HPT.EGL.0107.e Error occurred while writing out

XML file fileName.

Explanation: The Stage1 migration tool was not able

to write the specified file name.

User response: Verify that there is sufficient space

available for the file. Then try migrating again.

HPT.EGL.0108.w partType part was excluded from

migration due to invalid whitespace in

the name partName. The part is in

package packageName, versionName.

Explanation: In VisualAge Generator, it is possible to

create a part that contains blanks at the end of the part

name. Frequently when this occurs, there are 2 parts

with the same name, except that one part has blanks at

the end of its name. These are not duplicate parts

because the names differ slightly. However, the part

name in the External Source Format file is identical,

even though the rest of the source code for the parts

might differ. The Stage 1 migration tool omits any part

name that contains blanks from the migration set. This

is because the part name that ends with blanks cannot

be referenced by any other VAGen part. In the case

where there is no similarly named part, this technique

ensures that a part that cannot be referenced by other

parts is not migrated. In the case where there is a

similarly named part, this technique ensures that the

Stage 2 migration tool converts the correct part

definition to EGL.

User response: None. However, you might want to

review the part in VisualAge Generator to determine if

there were similarly named parts. Use the VAGen Parts

Browser, and search all parts in the migration set for

partName*.

HPT.EGL.0109.e An unexpected exception occurred:

javaExceptionStackTrace

Explanation: An unexpected error occurred during the

Stage 1 migration tool.

User response: Review the javaExceptionStackTrace.

Depending on the error it might be something you can

ignore or correct. For example:

v You can ignore a message that indicates a character

that could not be converted was replaced by a

substitute character. This message occurs if an

invalid character occurs in the External Source

Format. The character is replaced by a blank in the

migration database. The Stage 1 migration tool

continues processing. You can use your migration

database for Stage 2 and 3.

v You can correct the problem if the message indicates

that an SQL column is too short to contain the EGL

file name. In this case, the Stage 1 migration tool

stops processing because the information in the

migration database is invalid. You can correct the

problem by modifying the SQL table definition to

Appendix C. Messages from the migration tools 361

increase the length of the column and then running

Stage 1 again. However, before you increase the

length of the SQL column, consider whether you will

want to scroll these long names after migration and

whether a longer name might exceed the EGL limits.

After you have modified your renaming rules or the

SQL column, run Stage 1 migration again.

If you are not able to resolve the problem, contact IBM

support for assistance.

HPT.EGL.0110.e Project projectName version

versionName is not defined in the

repository.

Explanation: The Stage 1 migration tool expanded the

high-level PLP for the migration set, including the

chain of PLP projects. The specified project version is

referenced in the PLP chain, but is not available in the

repository.

User response: Determine whether the project and

version should be included in the migration set. If so,

check to see whether the requested version of the

project has been purged from the repository. If so,

restore the project version and then migrate again. If

you are not able to resolve the problem, contact IBM

support for assistance.

HPT.EGL.0111.e Original VAGen project name

projectName - results in a derived empty

EGL project name. Modify the renaming

rules.

Explanation: Using the renaming rules that you

specified, the migration tool has created a proposed

EGL project name that does not contain any characters.

User response: Edit the Stage 1 migration preferences

file and modify your project renaming rules so that

they result in valid EGL project names. When you

modify the renaming rules, be sure to consider the

effect of any renaming rules that specify a Mapping

Context of both.

HPT.EGL.0112.e Original VAGen package name

packageName - results in a derived empty

EGL package name. Modify the

renaming rules.

Explanation: Using the renaming rules that you

specified, the migration tool has created a proposed

EGL package name that does not contain any

characters.

User response: Edit the Stage 1 migration preferences

file and modify your package renaming rules so that

they result in valid EGL package names. When you

modify the renaming rules, be sure to consider the

effect of any renaming rules that specify a Mapping

Context of both.

HPT.EGL.0113.e Migration Set migrationSetName -

migrationSetVersion contains number

duplicate parts. Duplicates are not

permitted.

Explanation: The Stage 1 migration tool requires

unique part names so that it can associate the correct

source code with the part edition. The specified

migration set contains duplicate part names. Number

specifies the number of pairs of duplicate part names.

Message HPT.EGL.0115.e provides the part names and

the package names in which the parts occur. There is

one message for each pair of part names.

User response: The project versions from the

migration set are still in the workspace. From the

VAGen Parts Browser, select Tools > Show Duplicate

Parts to determine which parts have duplicate names.

Correct the problem, version the projects, update your

migration set definition, and then run the Stage 1 tool

again.

HPT.EGL.0114.e Package packageName version

packageVersionName in project projectName

version projectVersionName is not defined

in the repository.

Explanation: The Stage 1 migration tool expanded the

high-level PLP for the migration set, including the

chain of PLP projects. The specified package version is

referenced by the specified project version in the PLP

chain, but is not available in the repository. The

packageVersionName might be in the format: Missing -

(versionDateTimeStamp).

User response: Determine whether the package

version should be included in the project. If so, check

to see whether the requested version of the package has

been purged from the repository. If so, restore the

package version and then migrate again. If you are not

able to resolve the problem, contact IBM support for

assistance.

HPT.EGL.0115.e Duplicate part partName was found

in packageName1 with type partType1 and

in packageName2 with type partType2.

Explanation: The Stage 1 migration tool requires

unique part names so that it can associate the correct

source code with the part edition. The specified part

name occurs in one or more packages, possibly with

different part types. Message HPT.EGL.0115.e is

repeated for each pair of part names.

User response: The project versions from the

migration set are still in the workspace. From the

VAGen Parts Browser, select Tools > Show Duplicate

Parts to determine which parts have duplicate names.

Correct the problem, version the projects, update your

migration set definition, and then run the Stage 1 tool

again.

362 Rational Software Development Platform: VisualAge Generator to EGL Migration Guide

Stage 1 on VisualAge Smalltalk

The following messages occur only in the VisualAge Smalltalk version of the

VisualAge Generator to EGL migration tool.

HPT.EGL.0201.e Current application name

vagenApplicationName - results in EGL

package name eglPackageName, which

starts with # or @ or uses reserved

word(s) reservedWordList. It must be

renamed.

Explanation: EGL reserved words cannot be used as

any word in the dot notation for EGL package names.

User response: Use the Stage 1 renaming rules to

create an EGL package name that does not violate the

EGL naming restrictions. Refer to Appendix

Appendix A, “Reserved words,” on page 221 that lists

the EGL reserved words. Be sure that the resulting EGL

package name does not start with the # or @ symbol.

HPT.EGL.0202.e Migration set migrationSetName

references Configuration map

configurationMapName, which is not

defined in the repository.

Explanation: The Stage 1 migration tool expanded the

high-level configuration map for the specified

migration set. However, when the tool expanded the

high-level configuration map and the chain of required

maps and applications, one or more required maps was

not available in the library.

User response: Determine whether the required map

should be included in the migration set. If so, check to

see whether the requested version of the configuration

map has been purged from the library. If so, salvage

the requested configuration map and then migrate

again.

HPT.EGL.0203.e ProgramContext encountered a

database error errorMessage.

Explanation: A database error occurred. Possible

problems are invalid schema name, user authority

restrictions, or missing SQL tables.

User response: Correct the migration preferences file.

If the problem persists, contact IBM support for

assistance.

HPT.EGL.0204.e An error occurred while connecting

to the database. ErrorMessage.

Explanation: A database error occurred on connect.

Possible problems are invalid userid or password name

or invalid database name.

User response: Correct the migration preferences file.

If the problem persists, contact IBM support for

assistance.

HPT.EGL.0205.i Migration produced n migration sets

from the v versions of configuration

map configMapName. The preference file

specified the version depth as d.

Explanation: The Stage 1 migration preferences file

specified that you wanted to migrate the number of

versions specified by d. The Stage 1 migration tool

should have produced d migration sets -- one for each

version of the specified configuration map. However,

the migration tool only created the number of

migration sets specified by n. The number specified by

v is the number of versions of the specified

configuration map that the migration tool found in the

library. If v is less than d, this means that there were

not as many versions of the configuration map as you

anticipated. In this case, n and v should be equal,

indicating that all the configuration map versions

resulted in migration sets. If v is greater than d, this

means that there are more versions of the configuration

map in the library. In this case, n and d should be

equal, indicating that your version depth preference

was met.

User response: None.

HPT.EGL.0206.e Migration set migrationSetName

encountered a load error.

Explanation: The migration set could not be loaded

into your image. This could occur because there are

duplicate part names in the migration set.

User response: Review the System Transcript to

determine the cause of the error. Correct the problem

and then run Stage 1 migration again.

HPT.EGL.0207.w partType part was excluded from

migration due to invalid whitespace in

the name partName. The part is in

application applicationName, versionName.

Explanation: In VisualAge Generator, it is possible to

create a part that contains blanks at the end of the part

name. Frequently when this occurs, there are 2 parts

with the same name, except that one part has blanks at

the end of its name. These are not duplicate parts

because the names differ slightly. However, the part

name in the External Source Format file is identical,

even though the rest of the source code for the parts

might differ. The Stage 1 migration tool omits any part

name that contains blanks from the migration set. This

is because the part name that ends with blanks cannot

be referenced by any other VAGen part. In the case

where there is no similarly named part, this technique

ensures that a part that cannot be referenced by other

parts is not migrated. In the case where there is a

Appendix C. Messages from the migration tools 363

similarly named part, this technique ensures that the

Stage 2 migration tool converts the correct part

definition to EGL.

User response: None. However, you might want to

review the part in VisualAge Generator to determine if

there were similarly named parts. Use the VAGen Parts

Browser, and search all parts in the migration set for

partName*.

HPT.EGL.0208.e Database column

schemaName.tableName.columnName has

truncated data.

Explanation: One or more of your renaming rules

resulted in an EGL project, package, or version name

that is longer than fits in the corresponding SQL

columns.

User response: Modify your renaming rules so that

they result in shorter EGL project, package, or version

names. Alternatively, you can modify the DB2 table to

increase the length of the SQL column. However, before

you increase the length of the SQL column, consider

whether you will want to scroll these long names after

migration and whether a longer name might exceed the

EGL limits. After you have modified your renaming

rules or the SQL column, run Stage 1 migration again.

HPT.EGL.0211.e Original VAGen configuration map

name configurationMapName - results in a

derived empty EGL project name.

Modify the renaming rules.

Explanation: Using the renaming rules that you

specified, the migration tool has created a proposed

EGL project name that does not contain any characters.

User response: Edit the Stage 1 migration preferences

file and modify your configuration map renaming rules

so that they result in valid EGL project names. When

you modify the renaming rules, be sure to consider the

effect of any renaming rules that specify a Mapping

Context of both.

HPT.EGL.0212.e Original VAGen application name

applicationName - results in a derived

empty EGL package name. Modify the

renaming rules.

Explanation: Using the renaming rules that you

specified, the migration tool has created a proposed

EGL package name that does not contain any

characters.

User response: Edit the Stage 1 migration preferences

file and modify your application renaming rules so that

they result in valid EGL project names. When you

modify the renaming rules, be sure to consider the

effect of any renaming rules that specify a Mapping

Context of both.

 ̀ ``

Messages from the VisualAge Generator to EGL migration tool— Stage

2

The message inserts are always the VAGen part name, before any required

renaming for EGL reserved words.

IWN.MIG.0001.e Exception parsing External Source

Format file fileName - invalid External

Source Format header.

Explanation: The migration tool only processes

External Source Format that is exported from VisualAge

Generator 4.5. The first line of the specified External

Source Format file does not have the proper header for

a VisualAge Generator 4.5 External Source Format file.

User response: Import the External Source Format file

into VisualAge Generator 4.5. This converts your

current parts to VisualAge Generator 4.5 format. Then

export the parts using VisualAge Generator 4.5 and run

migration again.

IWN.MIG.0002.e Exception parsing External Source

Format file fileName, partType, partName -

exceptionText

Explanation: A problem occurred parsing the External

Source Format syntax from VisualAge Generator.

Possible causes of this problem are:

v Mismatched quote marks, including the following:

currency field for a data item

v Mismatched comment delimiters in a control part.

v National language characters that are not valid for

your locale. For example, attempting to migrate

VAGen source code that uses double-byte characters

such as Chinese on a workstation that is not set for a

double-byte locale.

User response: Correct the part in VisualAge

Generator and export the External Source Format again.

Then run the Stage 2 migration tool to process the file.

If you are unable to correct the part in VisualAge

Generator, contact IBM support for assistance. Be

prepared to provide the External Source Format source

for the file.

364 Rational Software Development Platform: VisualAge Generator to EGL Migration Guide

IWN.MIG.0003.e Exception converting to EGL for

file fileName, partType, partName -

exceptionText

Explanation: A problem occurred during the creation

of the EGL source. The exceptionText identifies the

specific problem that occurred.

User response: Contact IBM support for assistance. Be

prepared to provide the External Source Format source

for the file.

IWN.MIG.0004.e Output file fileName1 and UI record

have the same name - UI record placed

in file fileName2.

Explanation: During single file migration, fileName1 is

the specified output file. The external source format file

contains a UI record that has the same name as the

specified output file. The file also contains some other

parts. The migration tool placed the other parts in the

specified output file before it processed the UI record.

The tool then placed the UI record into an EGL file

named fileName2. There will be an error in the

Problems view.

User response: Give fileName1 a different name. Give

fileName2 the same name as that of the VGUI record.

IWN.MIG.0047.i Migration set Name_version —

migration started.

Explanation: This is an informational message to

indicate status from the migration tool.

User response: None.

IWN.MIG.0048.i Migration set Name_version -

migration completed.

Explanation: This is an informational message to

indicate status from the migration tool.

User response: None.

IWN.MIG.0049.i partType partName for EGL

projectName, packageName, fileName -

Migration started

Explanation: This is an informational message to

indicate status from the migration tool. The partType is

one of the following: Program, Map Group, or Table.

The associates for the specified partName will be

migrated at the same time. The associates might be in

the same file as the partName or in different projects,

packages, or files based on information in the migration

database. When migration of a program starts, each

associated map group is migrated, followed by each

associated table. Finally, any remaining associates

(records, shared items, and functions) are migrated.

User response: None.

IWN.MIG.0050.i Program programName - Migration of

other associates started

Explanation: This is an informational message to

indicate status from the migration tool. When migration

of a program starts, each associated map group is

migrated, followed by each associated table. Finally,

any remaining associates (records, shared items, and

functions) are migrated. Message IWN.MIG.0050.i is

issued when the migration of the remaining associates

for the program starts.

User response: None.

IWN.MIG.0051.e Exception parsing migration set

planName, partType, partName - invalid

External Source Format header.

Explanation: The migration tool only processes

External Source Format that is exported from VisualAge

Generator 4.5. The first line of the External Source

Format for the specified part does not have the proper

header for a VisualAge Generator 4.5 External Source

Format file. This might occur if you modified the

sample Stage 1 migration tool or if you wrote your

own Stage 1 migration tool to load the migration

database.

User response: Import the External Source Format file

into VisualAge Generator 4.5. This converts your

current parts to VisualAge Generator 4.5 format. Then

use the Stage 1 migration tool to export the migration

set.

IWN.MIG.0052.e Exception parsing migration set

planName, partType, partName -

exceptionText.

Explanation: A problem occurred parsing the External

Source Format syntax from VisualAge Generator.

Possible causes of this problem are:

v Mismatched quote marks, including the following:

– currency field for a data item

v Mismatched comment delimiters in a control part.

v National language characters that are not valid for

your locale. For example, attempting to migrate

VAGen source code that uses double-byte characters

such as Chinese on a workstation that is not set for a

double-byte locale.

User response: Correct the part in VisualAge

Generator and run Stage 1 migration again to correct

the database. Then run the Stage 2 migration tool again

to process the updated parts. If you are unable to

correct the part in VisualAge Generator, contact IBM

support for assistance. Be prepared to provide a small

repository (.dat file) containing the parts that have

problems.

Appendix C. Messages from the migration tools 365

IWN.MIG.0053.e Exception converting to EGL for

migration set planName, partType,

partName - exceptionText.

Explanation: A problem occurred during the creation

of the EGL source. The exceptionText identifies the

specific problem that occurred.

User response: Contact IBM support for assistance. Be

prepared to provide the External Source Format source

for the part.

IWN.MIG.0054.e Invalid External Source Format for

migration set migrationSetName, partType,

partName.

Explanation: The External Source Format stored for

the specified part is not valid. The migration tool

continues processing other parts in the specified

migration set. For the purposes of migrating with

associated parts, the migration tool considers the

specified part to be unavailable. The migration tool

stores intentionally invalid EGL in the migration

database for the specified part. The EGL that is stored

is EZE_UNKNOWN_PARTTYPE partName; This ensures

that there will be an error in the Problems view.

User response: Review the specified part in VisualAge

Generator. Try exporting External Source Format for the

part and migrating the part in single file mode. If you

are unable to resolve the problem, contact IBM support

for assistance. Be prepared to provide a small

repository (.dat file) or External Source File containing

the parts that have problems.

IWN.MIG.0055.e Migration halted - error limit

exceeded.

Explanation: The error threshold has been exceeded

for parts with invalid External Source Format. The

migration tool stops processing.

User response: Review all occurrences of message

IWN.MIG.0054.e. If you created your own tool to load

the migration database, there might be a problem with

the way the tool is loading External Source Format

code into the migration database. See Appendix G,

“Migration Database,” on page 413 for some queries

that might be useful in determining what is causing the

problem.

IWN.MIG.0060.e An error occurred while loading the

database driver. driver: driverName

Explanation: The specified database driver cannot be

located.

User response: Correct the database driver name. Also

confirm that your database driver location is correct.

IWN.MIG.0061.e An error occurred while connecting

to the database. database:

databaseName.errorText

Explanation: The migration tool cannot connect to the

specified database using the specified schema name.

The errorText field provides additional details of why

the connection failed.

User response: Correct the database name. If you are

connecting to a remote database, be sure that you have

cataloged the database locally.

IWN.MIG.0063.e Error occurred when closing the

database connection.

Explanation: Migration completed successfully, but the

migration tool was not able to close the database

connection.

User response: Shut down the EGL development

environment before attempting to backup your

database.

IWN.MIG.0070.e The user exit method

renameUserExitName [partName] does not

exist.

Explanation: The JAR file that you specified for your

Rename user exit or the package and class within the

JAR file could not be found.

User response: Check the JAR file location, Package

name, and Class name that you specified for your

Rename user exit in the VAGen Migration Preferences.

IWN.MIG.0071.e The user exit method

renameUserExitName [partName] does not

have the required method signature.

Explanation: The Rename user exit requires that you

include a method with the signature

renameUserExit(String s, Connection c). This method did

not exist in the JAR file, package, and class that you

specified for your Rename user exit in the VAGen

Migration Preferences.

User response: Review your class definition and

ensure that you included the required method

signature. Also ensure that you specified the correct the

JAR file location, Package name, and Class name for

your Rename user exit in the VAGen Migration

Preferences.

IWN.MIG.0072.e The user exit method

renameUserExitName [partName] enforces

Java language access control and the

underlying method is inaccessible.

Explanation: The migration application does not have

access to the definition of the specified user exit class.

User response: Verify that Rename user exit class is

366 Rational Software Development Platform: VisualAge Generator to EGL Migration Guide

defined as public and it is in the specified package.

IWN.MIG.0073.e The user exit method

renameUserExitName [partName] abruptly

terminated by throwing an exception.

Explanation: The method renameUserExit(String s,

Connection c) returned a null value. Migration

continues. The migration tool uses the original VAGen

part name.

User response: Use a try ... catch block around the

code in your Rename user exit. If there is an exception,

return the original VAGen part name to avoid getting

this message.

IWN.MIG.0080.i VAGen Migration Preferences file

pref_store.ini not found; defaults

assumed.

Explanation: There is no VAGen migration preferences

file. The migration tool uses the default values for the

preferences (for example, the renaming suffix and help

map suffix). This might be because you specified a new

workspace during migration so that preferences do not

exist. The preferences file is located in

workspace-directory\.metadata\.plugins

 \org.eclipse.core.runtime\.settings

 \com.ibm.etools.egl.vagenmigration.prefs

User response: See “VAGen Migration Preferences” on

page 157 for information about the default values for

the migration preferences.

IWN.MIG.0081.i File fileName - migration completed.

Explanation: The migration tool has completed

processing for the specified file.

User response: Review the log messages to see the

results of the migration.

IWN.MIG.0082.e File fileName - required parameters

are not specified.

Explanation: One or more required parameters have

not been specified. The -importFile parameter is always

required. If the -importFile parameter specifies an

External Source Format file, then the -eglFile and

-package parameters are also required.

User response: Review the batch command file to

determine which parameters were not specified. Add

the parameters and then run the batch command file

again.

IWN.MIG.0083.e File fileName - parameter parmName

has not been assigned a value.

Explanation: parmName is one of the following:

-importFile, -eglFile, -package.

User response: Correct the batch command file and

then run it again.

IWN.MIG.0084.e File fileName - parameter parmName,

value value is not valid.

Explanation: parmName is one of the following:

-importFile, -eglFile, -package. The parameter names

are case sensitive.

User response: Correct the batch command file and

then run it again.

IWN.MIG.0085.e File fileName - invalid parameters

are passed in the parameter list.

Explanation: There is a problem with the batch

command file. One or more of the parameters is

entered incorrectly. The only valid parameters are:

-importFile, -eglFile, -package, and -overwrite.

User response: Correct the batch command file and

then run it again.

IWN.MIG.0095.e Function functionName - EZESCRPT

is not supported for migration.

Explanation: The specified function contains

statements that use the EZESCRPT special function

word. EZESCRPT is not currently supported by the

VAGen migration tool. The migration tool migrates the

function, but comments out the statement that uses

EZESCRPT.

User response: Review the EGL function. You will not

be able to generate or run programs that use this

function in this release.

IWN.MIG.0101.e Data item dataItemName - Unable to

determine edit routine type for

editRoutineName; function assumed.

Explanation: VisualAge Generator supports EZEC10,

EZEC11, a function or a table as the map edit routine

for a data item. EGL supports both a validatorFunction

and a validatorDataTable property for a dataItem. The

migration tool converts the map edit routine as follows:

v EZEC10 and EZEC11 migrate to the validatorFunction

property.

v If the part specified by editRoutineName is available

during migration and is a function, the

editRoutineName migrates to the validatorFunction

property. The migration tool also migrates the edit

routine to the validatorFunction property if the

editRoutineName is longer than 7 characters because

table names are limited to 7 characters in VisualAge

Generator.

v If the part specified by editRoutineName is available

and is a table, the editRoutineName migrates to the

validatorDataTable property. The migration tool also

migrates the edit routine to the validatorDataTable

Appendix C. Messages from the migration tools 367

property if an edit message is specified for the item

because VisualAge Generator only uses the edit

message in conjunction with EZEC10, EZEC11, or a

table.

v If the part specified by the editRoutineName is not

available during migration and the editRoutineName

is 7 or fewer characters and an edit message is not

specified, the migration tool assumes that

editRoutineName is a function and migrates to the

validatorFunction property. Message IWN.MIG.0101.e

is only issued in this situation.

User response: If the specified edit routine is not a

function, modify the EGL dataItem definition and

change the validatorFunction property to the

validatorDataTable property. For additional

considerations, see the information on edit routines in

“Map edit routine for shared data items” on page 64.

IWN.MIG.0102.w Part partName uses shared data

item dataItemName - Unable to migrate to

a primitive definition; using a type

definition

Explanation: You selected the preference that migrates

VAGen shared data items to EGL primitive definitions

whenever a shared data item is used in a record, table,

called parameter list, function parameter list, or

function local storage. The item specified by

dataItemName is used in the part specified by partName.

However, the data item definition is not available

during migration. The migration tool uses the data item

name as a type definition so that the migrated code

will be valid.

User response: No action is required if you want to

use the type definition. If you want to use a primitive

definition, modify the specified part to use the correct

item characteristics. Alternatively, include the shared

data item in your migration set (or the External Source

Format file if you are migrating in single file mode)

and migrate again.

IWN.MIG.0103.w Data item dataItemName --

preferences caused evensql=y to be

ignored.

Explanation: The specified data item part is a VAGen

PACK (EGL decimal) item with evensql=y. Your VAGen

Migration Preferences specified that evensql=y is not to

be honored. Based on your preferences, the migration

tool converted the PACK item to the next higher odd

precision, with a maximum length of 18. The difference

in the EGL precision is as follows:

v If evensql=n is specified for an item, the EGL

precision is always calculated as (VAGen bytes * 2) -

1 with a maximum value of 18.

v If evensql=y is specified for an item, the EGL

precision is calculated based on the preference:

– If the preference is selected (do not honor

evensql=y), the EGL precision is calculated as:

(VAGen bytes * 2) - 1 with a maximum value of

18. Message IWN.MIG.0103.w is only issued in

this situation.

– If the preference is not selected (honor evensql=y),

the EGL precision is calculated as (VAGen bytes *

2) - 2 with a maximum value of 18. Message

IWN.MIG.0103.w is not issued.

User response: None. However, you might want to

review the use of this item in any SQL WHERE clauses

or EGL prepare statement. There might be an impact on

performance if the definition of this item does not

exactly match the SQL table definition. For details, see

information about EVENSQL in “Eliminating the use of

VisualAge Generator Compatibility mode” on page 201

and “PACK data items with even length” on page 61.

IWN.MIG.0201.i Record recordName contains level 77

items; creating additional record named

level77RecordName.

Explanation: VisualAge Generator supports level 77

items in working storage records. EGL does not

support level 77 items. EGL does permit the definition

of independent data items. The migration tool splits

working storage records that contain level 77 items into

2 separate basicRecords -- one containing the non-level

77 items and one containing the level 77 items. If the

working storage record contains only level 77 items,

then the migration tool only creates the level 77

basicRecord. If a program specifies a primary working

storage record that contains level 77 items, the

migration tool includes declarations for both the

original basicRecord and the level 77 basicRecord in the

program definition.

User response: None. For additional considerations,

including the effect if recordName is not available

during the migration of programs and statements, see

the information on level 77 items in records in “Level

77 items in records” on page 67.

IWN.MIG.0202.i Record recordName redefines

redefinedRecordName.

Explanation: recordName is a VAGen Redefined record

that specifies redefinedRecordName as the record being

redefined. recordName provides a different item layout

for the same physical storage that is used by the

redefinedRecordName. EGL does not retain redefinition

information in the record parts. That information is

kept only in the programs. The migration tool includes

a comment in recordName to provide the original

VAGen redefinedRecordName information. When

migrating programs, if recordName is available and

results in an overlay definition in VisualAge Generator,

the migration tool includes the redefines property for the

recordName declaration.

User response: None. For additional considerations,

including the effect if recordName is not available

during migration of a program, see the information on

368 Rational Software Development Platform: VisualAge Generator to EGL Migration Guide

redefined records in “Redefined records” on page 66.

IWN.MIG.0203.e Record recordName — Does not

contain any items.

Explanation: VisualAge Generator permits you to save

a record part that does not contain any items. However,

the record cannot be used in any programs because it is

invalid. EGL does not permit record parts that do not

contain any items. The migration tool migrates the

record.

User response: Determine whether you still need to

have the record. If so, edit the record and add one or

more data items. If not, delete the record.

IWN.MIG.0204.e Record recordName - alternate

specification record altspecRecord is not

available; SQL table names cannot be

determined.

Explanation: The record recordName specifies an

alternate specification record named altspecRecord,

which provides the item structure for recordName. In

VisualAge Generator, for SQL records, the alternate

specification record also provides the SQL table names.

In EGL, the alternate specification record only provides

the structure by using the embed statement. The table

names must be specified in each SQL record part

definition. When migrating recordName, the record

specified as the alternate specification record is not

available during migration. The migration tool cannot

determine the correct table names and sets the

tableNames property to ###TABLES_NOT_FOUND###.

The definition for recordName is invalid.

User response: Edit recordName and copy in the

tableNames and/or tableNameVariables properties from

the VAGen alternate specification record (altspecRecord).

The tableNames property provides the actual SQL table

names. The tableNameVariables property provides table

name host variables. Both the tableNames and the

tableNameVariables properties can be used if the

recordName references a mixture of actual SQL table

names and SQL table name host variables. For

additional considerations, see the information in

“Alternate specification records” on page 68.

IWN.MIG.0205.e Record recordName - alternate

specification record altspecRecord is not

available; SQL key items cannot be

determined.

Explanation: The record recordName specifies an

alternate specification record named altspecRecord,

which provides the item structure for recordName.

When VisualAge Generator determines the default

selection condition for an SQL record, VisualAge

Generator merges any items that specify key=yes in the

alternate specification record with the key item, if any,

specified in recordName. The keys are merged based on

the order in which the items are listed in the record

structure. In EGL, the alternate specification record only

provides the structure by using the embed statement. All

key items must be specified in each SQL record part

definition. When migrating recordName, the record

specified as the alternate specification record is not

available during migration. The migration tool cannot

determine the correct key items and sets the keyItems

property to ###KEYS_NOT_FOUND###, followed by

the key item, if any, from recordName. The definition for

recordName is invalid.

User response: Edit recordName and change the

keyItems property to replace ###KEYS_NOT_FOUND###

with the list of item names that specified key=yes in

the VAGen alternate specification record (altspecRecord).

Be sure to merge the key items from the alternate

specification record with the key item specified in the

VAGen definition for recordName so that the keyItems

property lists the items in the same order they appear

in the record structure. If an item is specified as

key=yes in the alternate specification record and as the

key item in recordName, only include the item once in

the merged list of keyItems in recordName. For additional

considerations, see the information on “Alternate

specification records” on page 68.

IWN.MIG.0206.i SQL Record recordName — Contains

a key item keyItem without specifying an

alternate specification record.

Explanation: VisualAge Generator permits you to save

an SQL record that specifies a key item even if you do

not specify an alternate specification record. However,

in this situation, VisualAge Generator ignores the key

item during test and generation. The key item only has

meaning when there is also an alternate specification

record.

User response: None. The key item was ignored in

VisualAge Generator. The migration tool eliminates it

during migration.

IWN.MIG.0207.i Record recordName - Specifies

alternate specification record

altspecRecord with only level 77 items;

embed statement omitted.

Explanation: The record specified by altspecRecord is a

working storage record that only contains level 77

items. When recordName specifies a working storage

record as the alternate specification, VisualAge

Generator uses only the structure (the non-level 77

items) from altspecRecord. The migration tool omits the

embed statement because there are no items in the

structure of altspecRecord.

User response: None. However, you might want to

delete recordName because it is an empty record. Be

sure to delete all references to recordName in your

programs.

Appendix C. Messages from the migration tools 369

IWN.MIG.0208.e Record recordName - alternate

specification record altspecRecord is not

available; cannot determine SQL column

name for !itemColumnName variables.

Explanation: The record recordName specifies an

alternate specification record named altspecRecord,

which provides the item structure for recordName.

When VisualAge Generator determines the default

selection condition for an SQL record, VisualAge

Generator converts any !itemColumnName variables to

the corresponding SQL column name. In EGL,

!itemColumnName variables are not supported. The

SQL columns must be explicitly named in the default

selection condition for each SQL record part definition.

When migrating recordName, the record specified as the

alternate specification record is not available during

migration. The migration tool cannot determine the

correct SQL column name that corresponds to one or

more !itemColumnName variables in the default

selection condition. The migration tool uses

!itemColumnName in the EGL default selection

condition. The definition for recordName is invalid.

User response: Edit recordName and change the

defaultSelectCondition property to replace the

!itemColumnName variables with the corresponding

SQL column names from the VAGen alternate

specification record (altspecRecord). For additional

considerations, see the information on

!itemColumnName variables in “Alternate specification

records” on page 68.

IWN.MIG.0209.e Record recordName - alternate

specification record altspecRecord has no

items; embed statement omitted.

Explanation: The record recordName specifies an

alternate specification record named altspecRecord,

which provides the item structure for recordName.

However, the alternate specification record does not

have any data items. The migration tool omits the

embed statement from the definition for recordName.

User response: None. However, you should review

recordName and altspecRecord to determine whether you

need to include data items or whether the two records

can be deleted. Be sure to delete all references to these

records in your programs.

IWN.MIG.0210.e Record recordName - Unable to

determine column names for

!itemColumnName variables.

Explanation: The default select condition for the

specified record uses one or more VAGen

!itemColumnName variables. A VAGen

!itemColumnName variable specifies the name of an

item in the SQL record definition which corresponds to

the actual SQL column name. VisualAge Generator

determines the actual SQL column names for any

!itemColumnName variables from the SQL record at

test and generation time. EGL does not support

!itemColumnName variables. Instead, EGL requires that

the actual SQL column names be used in any modified

SQL statement. Message IWN.MIG.0210.e is issued

when the record specified by recordName is invalid in

VisualAge Generator. In this case, the record uses one

or more !itemColumnName variables that are not

defined within the record or its alternate specification

record. The migration tool is unable to substitute the

actual SQL column name.

User response: Edit the record and change the

!itemColumnName variables to the correct SQL column

names.

IWN.MIG.0211.w Record recordName, data item

dataItemName - preferences caused

evensql=y to be ignored.

Explanation: The specified record contains the

specified nonshared data item. The record definition

specifies that this nonshared data item is a VAGen

PACK (EGL decimal) item with evensql=y. Your VAGen

Migration Preferences specified that evensql=y is not to

be honored. Based on your preferences, the migration

tool converted the PACK item to the next higher odd

precision, with a maximum length of 18. The difference

in the EGL precision is as follows:

v If evensql=n is specified for an item, the EGL

precision is always calculated as (VAGen bytes * 2) -

1 with a maximum value of 18.

v If evensql=y is specified for an item, the EGL

precision is calculated based on the preference:

– If the preference is selected (do not honor

evensql=y), the EGL precision is calculated as:

(VAGen bytes * 2) - 1 with a maximum value of

18. Message IWN.MIG.0211.w is only issued in

this situation.

– If the preference is not selected (honor evensql=y),

the EGL precision is calculated as (VAGen bytes *

2) - 2 with a maximum value of 18. Message

IWN.MIG.0211.w is not issued.

User response: None. However, you might want to

review the use of this item in any SQL WHERE clauses

or EGL prepare statement. There might be an impact on

performance if the definition of this item does not

exactly match the SQL table definition. For details, see

information about EVENSQL in “Eliminating the use of

VisualAge Generator Compatibility mode” on page 201

and “PACK data items with even length” on page 61.

IWN.MIG.0212.e Record recordName - alternate

specification record altspecRecord is not

available; cannot determine whether any

item names require an override for the

dliFieldName property.

Explanation: The record recordName specifies an

alternate specification record named altspecRecord,

which provides the item structure for recordName. In

370 Rational Software Development Platform: VisualAge Generator to EGL Migration Guide

VisualAge Generator, the field names in a DL/I

segment record must match the names in the DL/I

PSB. In EGL, field names cannot be reserved words or

start with the # or @ symbol. EGL also permits the field

names in a DL/I segment record to be longer than the

8-character limitation imposed for the DL/I PSB. If the

field name in a DL/I PSB does not match the EGL field

name, EGL uses the dliFieldName property to provide

the name used in the DL/I PSB for the corresponding

EGL field name. Because the alternate specification

record is not available, the migration tool cannot

determine whether any of the field names are renamed

due to the EGL naming conventions.

User response: Review the record definition for

altspecRecord to determine if any field names in the

record must be renamed due to the EGL naming

conventions. If any field name was renamed, edit

recordName and add overrides to the embed statement

for each renamed field to specify its corresponding

dliFieldName property. The value for the dliFieldName

property must be the original VAGen field name.

 For an example of how to code the embed statement

with an override for a field, see Table 80 on page 243.

IWN.MIG.0251.w UI record recordName is a reserved

word or starts with the # or @ symbol. It

was renamed to newRecordName.

Explanation: The UI record recordName conflicts with

an EGL reserved word or starts with the # or @ symbol.

The Stage 2 migration tool renamed the UI record to

newRecordName, based on the Renaming prefix you

specified in your migration preferences. The Stage 2

tool also includes the alias property for the VGUI

record so that the names in the EGL generated outputs

are identical to those in VisualAge Generator. The Stage

3 migration tool changed the file name for the VGUI

record to newRecordName.egl because EGL requires

that the VGUI record name and its file name must

match. If you migrate in single file mode, the migration

tool makes the same changes.

User response: None.

IWN.MIG.0301.e Table name tableName is a reserved

word. It must be renamed.

Explanation: The migration tool does not rename

tables for you.

User response: You must change the name of the table

and all references to it. This includes references in the

following places:

v Program use declaration statements

v Logic statements in programs and functions

v Data item validatorDataTable properties

v Form field validatorDataTable properties

v VGUI record field validatorDataTable properties

If you want to keep the original table name as the

name for the generated dataTable, set the alias property

to the original dataTable name. If you do not specify

the alias property, be sure to change any non-EGL

references to the dataTable name, including CICS

program definitions.

IWN.MIG.0401.e Map group (formGroup) name

mapGroupName is a reserved word. It

must be renamed.

Explanation: The migration tool does not rename map

groups (formGroups) for you.

User response: You must change the name of the

formGroup and all references to it, including references

in program use declaration statements. If you want to

keep the original map group name as the name for the

generated formGroup, set the alias property to the

original map group (formGroup) name. If you do not

specify the alias property, be sure to change any

non-EGL references to the formGroup name, including

CICS program definitions.

IWN.MIG.0402.e Map group mapGroupName --

Multiple devices have the same depth

and width, but different floating areas;

devices are: devicesList

Explanation: VisualAge Generator permits, but does

not recommend, different floating area sizes for device

types that have the same device size. EGL only permits

one floating area for each device size. The migration

tool migrates the floating area size for each device type.

If two or more VAGen devices convert to identical EGL

device size and margin specifications, the migration

tool only includes one entry for EGL. The formGroup

definition is invalid. This message is repeated for each

group of same-size device types that specified different

floating area information in VisualAge Generator.

User response: Edit the formGroup and delete all

except one floating area specification for each group of

same-size devices.

IWN.MIG.0403.e FormGroup formGroupName -

Requires editing to nest forms within

the formGroup.

Explanation: When you migrate in single file mode,

the migration tool does not nest forms within the

formGroup. Instead, the migration tool inserts an EGL

use statement to indicate the name of the forms that

belong to the formGroup. The migration tool includes

comments at the beginning and end of each form to

indicate its formGroup.

User response: Edit the file containing the formGroup

and move the forms so that they are nested within the

formGroup. The use statements in the formGroup

indicate where the forms should be moved. After you

have nested the form within the formGroup, remove

Appendix C. Messages from the migration tools 371

the use declaration statement.

IWN.MIG.0404.w Map Group mapGroupName - Uses

device deviceName and size depth,width

which is no longer supported. It must

be changed.

Explanation: VisualAge Generator permits some

device types which EGL COBOL generation no longer

supports for floating areas and text forms. The

migration tool includes the original depth and width in

the screenSize property within the ScreenFloatingArea

property. However, this screenSize is no longer

supported in EGL COBOL generation. If you generate

for COBOL, there will be an error message from

generation.

User response: If you plan to generate for COBOL,

edit the formGroup in EGL and either remove the

ScreenFloatingArea property for this depth and width or

change the depth and width to a size that is supported.

You might also need to modify the textForms within

the formGroup to reposition the variables and constants

to better fit the new depth and width.

IWN.MIG.0501.e Help map group mapGroupName

contains map mapName with variable

fields — mapName conflicts with the

same map name in the program’s main

map group.

Explanation: VisualAge Generator permits the same

map name to be used in a program’s main map group

and its help map group. EGL does not permit any

duplicate form names in the program’s two

formGroups. This restriction applies even if the forms

with duplicate names are not used by the program. The

migration tool renames maps in a program’s help map

group if they conflict with maps in the program’s main

map group and only contain constant fields. The

migration tool does not rename a map in the program’s

help map group if it contains variable fields, even if the

name conflicts with a map name in the program’s main

map group. This is because the map could be used by

some other program that specifies the help map group

as that program’s main map group.

User response: Edit the help formGroup and change

the name of the form. Also be sure to change the form

definition and all references to this form in all

programs that use the formGroup. For additional

considerations, see the information on map names in

“Map names and help map names” on page 75.

IWN.MIG.0502.e Map group mapGroupName, map

mapName and variable field mapItemName

- Unable to determine edit routine type

for editRoutineName; function assumed.

Explanation: VisualAge Generator supports EZEC10,

EZEC11, a function or a table as the map edit routine

for a map variable. EGL supports both a

validatorFunction function and a validatorDataTable

property for a form field. The migration tool converts

the map edit routine as follows:

v EZEC10 and EZEC11 migrate to the validatorFunction

property.

v If the part specified by editRoutineName is available

during migration and is a function, the

editRoutineName migrates to the validatorFunction

property. The migration tool also migrates the edit

routine to the validatorFunction property if the

editRoutineName is longer than 7 characters because

table names are limited to 7 characters in VisualAge

Generator.

v If the part specified by editRoutineName is available

and is a table, the editRoutineName migrates to the

validatorDataTable property. The migration tool also

migrates the edit routine to the validatorDataTable

property if an edit message is specified for the form

field because VisualAge Generator only uses the edit

message in conjunction with EZEC10, EZEC11, or a

table.

v If the part specified by the editRoutineName is not

available during migration and the editRoutineName

is 7 or fewer characters and an edit message is not

specified, the migration tool assumes that

editRoutineName is a function and migrates to the

validatorFunction property. Message IWN.MIG.0502.e

is only issued in this situation.

User response: If the specified edit routine is not a

function, modify the form field and change the

validatorFunction property to the validatorDataTable

property. For additional considerations, see the

information on edit routines in “Map variable fields

and edit routines” on page 78.

IWN.MIG.0503.w Map group mapGroupName, map

mapName - Unnamed variable field

converted to constant field at

position(row,column).

Explanation: VisualAge Generator permits, but does

not recommend, unnamed variable fields on maps. The

program cannot access these unnamed variable fields.

At test and generation, unnamed variable fields are

converted to constants. The migration tool converted

this unnamed variable field to a constant because one

or more properties are non-default values.

User response: Review the form definition and ensure

that a constant field is the correct migration for this

field. For additional considerations, see the information

on unnamed variable fields in “Unnamed map variable

fields” on page 81.

IWN.MIG.0504.w Map group mapGroupName, map

mapName - Unnamed variable field

removed from position(row,column).

Explanation: VisualAge Generator permits, but does

not recommend, unnamed variable fields on maps. The

372 Rational Software Development Platform: VisualAge Generator to EGL Migration Guide

program cannot access these unnamed variable fields.

At test and generation, unnamed variable fields are

converted to constants. The migration tool removed

this unnamed variable field because all of its properties

specify the default values for a constant field. EGL does

not require that constants with default properties be

explicitly defined for the form.

User response: Review the form definition and ensure

removing this field is the correct migration. For

additional considerations, see the information on

unnamed variable fields in “Unnamed map variable

fields” on page 81.

IWN.MIG.0505.w Map Group mapGroupName, map

mapName - Uses device deviceName and

size depth,width which is no longer

supported. It must be changed.

Explanation: VisualAge Generator permits some

device types which EGL COBOL generation no longer

supports for textForms. The migration tool includes the

original depth and width in the screenSizes property for

the migrated textForm. However, this screen size is no

longer supported in EGL COBOL generation. If you

generate for COBOL, there will be an error message

from generation.

User response: If you plan to generate for COBOL,

edit the textForm in EGL and remove the depth and

width from the screenSizes property or change the depth

and width to a size that is supported. You might also

need to modify the textForm to reposition the variables

and constants to better fit the new depth and width.

IWN.MIG.0506.e Map Group mapGroupName, map

mapName - Unprotected constant at row,

column; changed to protect=skip.

Explanation: VisualAge Generator permits

unprotected constants on both display and printer

maps. EGL requires that constants be specified as either

protect=skip or protect=no. The migration tool sets

protect=skip for the field.

User response: No action is required if protect=skip is

acceptable. With protect=skip, the end user can

continue typing at the end of any immediately

preceding variable field and the additional characters

will be placed in the next unprotected variable field.

Protect=no prevents the end user for continuing to type

at the end of any immediately preceding variable field.

The end user must tab to the next variable field to

continue typing.

IWN.MIG.0507.w Map Group mapGroupName, map

mapName - constant at row=0, column=0

changed to row=1, column=1.

Explanation: VisualAge Generator tolerates, but does

not fully support, a constant at position row=0,

column=0 on a map. Fields at row=0, column=0 cannot

specify any attribute information. EGL does not

support any field at row=0, column=0. The field at

row=0, column=0 is a constant and the first byte is

initialized to blank. The migration tool changes the

position to row=1, column=1 and deletes the first byte

of the constant value. The migration tool does not

include any field presentation properties such as color

or highlighting for the field because this information

was not recorded in the External Source Format file.

User response: Test any programs that use this form

to determine if there is a change in the appearance of

the display. If there is, edit the form and set the field

presentation properties to obtain the desired

appearance.

IWN.MIG.0508.e Map Group mapGroupName, map

mapName - constant at row=0, column=0

cannot be changed.

Explanation: VisualAge Generator tolerates, but does

not fully support, a constant at position row=0,

column=0 on a map. Fields at row=0, column=0 cannot

specify any attribute information. EGL does not

support any field at row=0, column=0. The field at

row=0, column=0 is a constant and the first byte is not

initialized to blank. The migration tool does not change

the position for the field because this could cause the

constant to be moved or eliminated from the form and

change the appearance. The migration tool does not

include any field presentation properties such as color

or highlighting for the field because this information

was not recorded in the External Source Format file.

There will be an error in the Problems view.

User response: Edit the form and change the constant

field to position the field at row=1, column = 1. If

necessary, modify the constant field to eliminate one

byte to compenstate for the attribute byte that now

occupies row=1, column=1. Be sure to test any

programs that use this form to determine if there is a

change in the appearance of the display. If there is, edit

the form and set the field presentation properties to

obtain the desired appearance.

IWN.MIG.0509.e Map Group mapGroupName, map

mapName - variable at row=0, column=0

cannot be changed.

Explanation: This map might be from an older version

of Cross System Product or VisualAge Generator.

VisualAge Generator 4.5 does not support variables at

row=0, column=0. Fields at row=0, column=0 cannot

specify any attribute information. EGL does not

support any field at row=0, column=0. The field at

row=0, column=0 is a variable field. The migration tool

does not change the position for the field because this

would either cause the field to be moved or result in

the loss of the first byte of data. The migration tool

does not include any presentation properties such as

color or highlighting for the field because this

information was not recorded in the External Source

Appendix C. Messages from the migration tools 373

Format file. There will be an error in the Problems

view.

User response: Edit the form and change the field to

position the field at row=1, column=1. If necessary,

modify other fields around the variable field to avoid

the loss of any data due to the attribute byte that now

occupies row=1, column=1. Be sure to test any

programs that use this form to determine if there is a

change in the appearance of the display. If there is, edit

the form and set the field presentation properties to

obtain the desired appearance.

IWN.MIG.0510.e Map Group mapGroupName, map

mapName - mapName conflicts with

program name.

Explanation: The program uses a map group or help

map group that contains a map that is named the same

as the program. VisualAge Generator permits the map

name to be the same as the program name. EGL does

not permit the form name to be the same as the

program name. The migration tool renames a map in

the program’s help map group if the map name is the

same as the program name and the map does not have

any variable fields. However, the migration tool does

not rename a map in the following situations:

v The map is a map with variable fields in the

program’s help map group.

v The map is any map in the program’s main map

group.

User response: Edit the formGroup and change the

name of the form. Also be sure to change the form

definition and all references to this form in all

programs that use the formGroup. For additional

considerations, see the information on map names in

“Map names and help map names” on page 75.

IWN.MIG.0511.e Map Group mapGroupName, map

mapName - contains non-standard array

for field fieldName.

Explanation: VisualAge Generator permits elements of

an array to have random placements on the map. EGL

provides the same support for forms. However, the

EGL Form Editor only supports standard arrays. A

standard array is one in which the position of all the

elements can be defined using the columns,

linesBetweenRows, spacesBetweenColumns, and

indexOrientation properties.

User response: The form is a valid EGL form.

However, you cannot modify the form using the EGL

Form Editor. If you need to change the form, you can

do one of the following:

v Maintain the source code for the form using the EGL

Editor. You can use the EGL Form Editor for other

forms in the same formGroup provided that they do

not have arrays or only have standard arrays.

v Use the EGL Editor to change the form so that all

arrays specify the element position using the

columns, linesBetweenRows,

spacesBetweenColumns, and indexOrientation

properties and remove the position information from

the this notation.

IWN.MIG.0512.e Map Group mapGroupName, map

mapName - duplicate cursor removed

from field fieldName.

Explanation: In some customizations of VisualAge

Generator Templates (VAGT), multiple cursors are

specified on a map. In this case, VisualAge Generator

tolerates the duplicate cursor. For test facility and

generation, VisualAge Generator places the cursor on

the first field that specifies the cursor and ignores all

the other fields. The first field in this case is the first in

row and column order, not first in the edit order. EGL

does not tolerate a duplicate cursor. The migration tool

removes the cursor specification from all fields except

the first field that specifies the cursor. If multiple

cursors are specified on array elements, the migration

tool removes the cursor specification from all elements

of the array except the first element that specifies the

cursor.

User response: No action is required if the cursor

position on the first field that specifies the cursor is

acceptable.

IWN.MIG.0601.w Function functionName, I/O object

recordName - Unable to determine record

type for UPDATE option; non-SQL

record assumed.

Explanation: For SQL, if there are multiple UPDATE

or SETUPD statements in a program, VisualAge

Generator requires that the REPLACE function specifies

the name of the corresponding UPDATE or SETUPD

statement. EGL uses the resultSetID for SQL statements

to specify the relationship between a replace statement

and its corresponding get or open statement. The

record specified by recordName is not available during

migration. The migration tool assumes that the

UPDATE function is for a non-SQL record and does not

include the resultSetID.

User response: If validation or generation flags an

error because there are multiple get or open statements

for the same record in the program, edit the function

and add a resultSetID to the get forUpdate statement.

The resultSetID must be unique within the program.

The recommended resultSetID is the function name

followed by the Result Set suffix preference you used

during migration. For additional considerations, see the

information in “SQL I/O with multiple updates” on

page 96.

374 Rational Software Development Platform: VisualAge Generator to EGL Migration Guide

IWN.MIG.0602.w Function functionName - Unable to

determine map type for I/O object

mapName; display map assumed.

Explanation: VisualAge Generator uses the DISPLAY

I/O option for both display and printer maps. EGL

uses the display statement only for text forms and the

print statement for print forms. In VisualAge Generator

Compatibility mode, the display statement can also be

used for print forms. The map specified as mapName is

not available during migration. The migration tool

assumes that the map is a display map and migrates to

the EGL display statement.

User response: No action is required as long as you

continue to use VisualAge Generator Compatibility

mode or if the map is a display map. If the map is a

print map and you want to discontinue use of

VisualAge Generator Compatibility mode, you must

change the function to use the print statement. For

additional considerations, see “DISPLAY statement for

maps” on page 89.

IWN.MIG.0603.e Function functionName, SQL I/O

object recordName - Unable to determine

SQL table name(s).

Explanation: VisualAge Generator determines the SQL

table names from the SQL record at test and generation

time. EGL requires that the table names be included in

any modified SQL statement. The record specified by

recordName is not available during migration. The

migration tool uses EZE_UNKNOWN_SQLTABLE for

the table name to insure that validation and generation

will flag an error. The migration tool also sets the table

label for the statement to T1.

User response: Edit the function and specify the

correct table name(s) and table label(s) based on the

record definition. The table names are in either or both

of the tableNames and tableNameVariables properties in

the EGL record definition. For additional

considerations, see the information on

EZE_UNKNOWN_TABLE in Appendix D, “Messages in

the Problems view,” on page 385.

IWN.MIG.0604.e Function functionName, SQL I/O

object recordName - Unable to determine

column names for !itemColumnName

variable(s).

Explanation: The modified SQL statement used one or

more VAGen !itemColumnName variables. A VAGen

!itemColumnName variable specifies the name of an

item in the SQL record definition which corresponds to

the actual SQL column name. VisualAge Generator

determines the actual SQL column names for any

!itemColumnName variables from the SQL record at

test and generation time. EGL does not support

!itemColumnName variables. Instead, EGL requires that

the actual SQL column names be used in any modified

SQL statement. The record specified by recordName, or

its alternate specification record, is not available during

migration. The migration tool uses the

!itemColumnNames in the modified SQL statement to

provide as much information as possible.

User response: Edit the function and specify the SQL

column names based on the record definition. For each

!itemColumnName, locate the corresponding item in

the SQL record definition. The column name for that

item is the column name you need to use in the EGL

I/O statement. For additional considerations, see the

information in “SQL I/O and !itemColumnName” on

page 95.

IWN.MIG.0605.w Function functionName, SQL I/O

object recordName - SQLEXEC with

model=none and no SQL clauses.

Explanation: The SQLEXEC statement specifies a

model type of none, but does not contain any SQL

clauses. VisualAge Generator in effect generates a no

op for this statement. The migration tool generates an

EGL no op statement (just a semi-colon) and includes a

VAGen Info comment to indicate that the model type

was none. If the VAGen function specifies an error

routine, the migration tool includes the try, onException,

and end statements appropriate for that error routine.

User response: Review the function to determine

whether the I/O statement should be eliminated or

expanded.

IWN.MIG.0607.e Function functionName, SQL I/O

object recordName - Unable to determine

SQL I/O clause clauseName.

Explanation: In VisualAge Generator, at some points

in time, only the SQL clause that was modified was

saved with the function. In this situation, VisualAge

Generator creates the remaining clauses from the record

definition that is specified as the I/O object for the

function. The specified recordName is not available

during migration. The migration tool is unable to create

the SQL clause. The clauseNames that might be listed in

this message include: SELECT, INTO,

INSERTCOLNAME, VALUES, and FORUPDATEOF.

The migration tool builds a skelton clause and includes

EZE_UNKNOWN_SQL_CLAUSENAME.

User response: Locate the record specified in the

message. Edit the function to include the missing SQL

clauses. To determine what the missing SQL clauses

need to be, use the VAGen SQL Statement Editor to

view the SQL clauses. See “SQL I/O and missing

required SQL clauses” on page 93 for more details and

potential problems. See the information on

EZE_UNKOWN_SQL_CLAUSENAME in Appendix D,

“Messages in the Problems view,” on page 385.

Appendix C. Messages from the migration tools 375

IWN.MIG.0608.e Function functionName, SQL I/O

object recordName - Unable to determine

SQL I/O clause clauseName for alternate

specification altspecRecordName.

Explanation: In VisualAge Generator, at some points

in time, only the SQL clause that was modified was

saved with the function. In this situation, VisualAge

Generator creates the remaining clauses from the record

definition that is specified as the I/O object for the

function. The specified recordName is available during

migration. However, recordName specifies an alternate

specification record altspecRecordName which is not

available during migration. The migration tool is

unable to create the SQL clause. The clauseNames that

might be listed in this message include: SELECT, INTO,

INSERTCOLNAME, VALUES, and FORUPDATEOF.

The migration tool builds a skelton clause and includes

EZE_UNKNOWN_SQL_CLAUSENAME.

User response: Locate the alternate specification

record specified in the message. Edit the function to

include the missing SQL clauses. To determine what the

missing SQL clauses need to be, use the VAGen SQL

Statement Editor to view the SQL clauses. See “SQL

I/O and missing required SQL clauses” on page 93 for

more details and potential problems. See “SQL I/O and

missing required SQL clauses” on page 93 for more

details and potential problems. See the information on

EZE_UNKOWN_SQL_CLAUSENAME in Appendix D,

“Messages in the Problems view,” on page 385.

IWN.MIG.0609.e Function functionName - record

recordName in SSAs is not available;

qualification of comparison value item

itemName cannot be determined.

Explanation: The modified DL/I statement used an

unqualified comparison value item. By default,

VisualAge Generator searches first for the item in the

DL/I segment record associated with the current SSA.

The specified DL/I segment record recordName

associated with the current SSA is not available.

Therefore, the migration tool is not able to determine

the qualification for the comparison value item.

User response: Locate and review the record specified

in the message. If the item is in the record, edit the

function to include the missing qualification for the

comparison value item. If the item is not in the record,

review your program logic to determine the correct

qualification to use. You can also review the generated

COBOL source code from the last time you generated

the program. In VisualAge Generator, at some points in

time, the rules for qualification of the comparison value

item varied. Therefore, due to the variations in the

qualification of the comparison value item, do not

regenerate the program using your current release of

VisualAge Generator unless you are certain that the

release has not changed since the last time you

generated the program.

IWN.MIG.0610.e Function functionName - record

recordName in SSAs has alternate

specification record altspecRecordName

that is not available; qualification of

comparison value item itemName cannot

be determined.

Explanation: The modified DL/I statement used an

unqualified comparison value item. By default,

VisualAge Generator searches first for the item in the

DL/I segment record associated with the current SSA.

The specified DL/I segment record recordName

associated with the current SSA is available during

migration. However, recordName specifies an alternate

specification record altspecName which is not available

during migration. Therefore, the migration tool is not

able to determine the qualification for the comparison

value item.

User response: Locate and review the records

specified in the message. If the item is in the alternate

specification record, edit the function to include the

missing qualification for the comparison value item. If

the item is not in the record, review your program logic

to determine the correct qualification to use. You can

also review the generated COBOL source code from the

last time you generated the program. In VisualAge

Generator, at some points in time, the rules for

qualification of the comparison value item varied.

Therefore, due to the variations in the qualification of

the comparison value item, do not regenerate the

program using your current release of VisualAge

Generator unless you are certain that the release has

not changed since the last time you generated the

program.

IWN.MIG.0611.e Function functionName - comparison

value item itemName is not in record

recordName; qualification cannot be

determined.

Explanation: The modified DL/I statement used an

unqualified comparison value item. By default,

VisualAge Generator searches first for the item in the

DL/I segment record associated with the current SSA.

The migration tool searched the DL/I segment record

associated with the current SSA, but could not find the

item. In VisualAge Generator, at some points in time,

the rules for qualification of the comparison value item

varied. The migration tool is not able to determine

which record should be used to qualify the comparison.

User response: Review your program logic to

determine the correct qualification to use. You can also

review the generated COBOL source code from the last

time you generated the program. Due to the variations

in the qualification of the comparison value item, do

not regenerate the program using your current release

of VisualAge Generator unless you are certain that the

release has not changed since the last time you

generated the program.

376 Rational Software Development Platform: VisualAge Generator to EGL Migration Guide

IWN.MIG.0612.e Function functionName - invalid

relational operator for SSA; correct

operator cannot be determined.

Explanation: The modified DL/I statement used a

relational operator that is invalid. This can occur due to

a problem in VisualAge Generator that caused it to

store an incorrect value for the relational operator. The

migration tool is not able to determine the correct

relational operator. The migration tool uses

EZE_UNKNOWN_RELOP as the relational operator.

User response: Use the DL/I Call Editor in VisualAge

Generator to review the SSAs for the specified function.

The correct operator is shown in the DL/I Call Editor

even though it is stored incorrectly in the External

Format File for the function. Edit the function in EGL

and change EZE_UNKNOWN_RELOP to the correct

value.

Note: The most likely operators to cause the problem

are the symbols used for not equal. The symbol

for not equal in an EGL SSA is !=.

IWN.MIG.0701.e Function functionName - Unable to

determine map type for mapName used

in SET map PAGE statement; used

converseLib.EZE_SETPAGE();

Explanation: VisualAge Generator uses SET map

PAGE to indicate that the screen is to be cleared for a

display map or that a page eject is to occur for a

printer map. EGL uses the converseLib.clearScreen()

statement only for text forms and the

converseLib.pageEject statement for print forms. The map

specified as mapName is not available during migration.

The migration tool does not make an assumption about

the map type. Instead, the migration tool uses the

converseLib.EZE_SETPAGE() statement to insure that

validation and generation will flag an error. The

migration tool includes the original map name as a

comment.

User response: Review the function and determine

whether clearScreen() or pageEject() is the correct choice.

For additional considerations, see the information in

“SET map PAGE statement” on page 100.

IWN.MIG.0702.e Function functionName - Unable to

determine return column name for

RETR statement due to missing table

tableName.

Explanation: If the return column is not specified on a

RETR statement, VisualAge Generator automatically

determines the return column name based on the

second column of the specified table. The EGL

replacement for RETR is an if statement, followed by an

assignment statement. The return column name must

be explicitly specified in the assignment statement. The

table specified by tableName is not available during

migration. The migration tool uses

EZE_UNKNOWN_RETURN_COLUMN to insure that

validation and generation will flag an error. If this

problem occurs in program flow statements, the

program name appears in the message instead of a

function name.

User response: Edit the function and specify the

correct return column based on the table definition. The

second column in the table is the default return column

that is used in VisualAge Generator. For additional

considerations, see the information in “RETR

statement” on page 100.

IWN.MIG.0703.e Function functionName - Unable to

determine search column name for

RETR statement due to missing table

tableName.

Explanation: If the search column is not specified on a

RETR statement, VisualAge Generator automatically

determines the search column name based on the first

column of the specified table. The EGL replacement for

RETR is an if statement, followed by an assignment

statement. The search column name must be explicitly

specified in the if statement. The table specified by

tableName is not available during migration. The

migration tool uses

EZE_UNKNOWN_SEARCH_COLUMN to insure that

validation and generation will flag an error. If this

problem occurs in program flow statements, the

program name appears in the message instead of a

function name.

User response: Edit the function and specify the

correct search column based on the table definition. The

first column in the table is the default search column

that is used in VisualAge Generator. For additional

considerations, see the information in “RETR

statement” on page 100.

IWN.MIG.0704.e Function functionName - Unable to

determine search column name for

FIND statement due to missing table

tableName.

Explanation: If the search column is not specified on a

FIND statement, VisualAge Generator automatically

determines the search column name based on the first

column of the specified table. The EGL replacement for

FIND is an if statement, followed by a function

invocation statement. The search column name must be

explicitly specified in the if statement. The table

specified by tableName is not available during

migration. The migration tool uses

EZE_UNKNOWN_SEARCH_COLUMN to insure that

validation and generation will flag an error. If this

problem occurs in program flow statements, the

program name appears in the message instead of a

function name.

User response: Edit the function and specify the

correct search column based on the table definition. The

Appendix C. Messages from the migration tools 377

first column in the table is the default search column

that is used in VisualAge Generator. For additional

considerations, see the information in “FIND

statement” on page 99.

IWN.MIG.0706.e Function functionName - Unable to

determine record type for recordName

used in IF, WHILE, or TEST DUP

statement; used EZE_DUPLICATE.

Explanation: VisualAge Generator supports checking

both DUP and UNQ for both non-SQL and SQL

records. For SQL records, DUP and UNQ are identical.

EGL supports both duplicate and unique for non-SQL

records. EGL only supports unique for SQL records.

The record specified by recordName is not available

during migration. The migration tool migrates DUP to

EZE_DUPLICATE to insure that validation and

generation will flag an error.

Note: The migration tool migrates the TEST statement

to an if statement.

User response: Edit the function and change

EZE_DUPLICATE to one of the following:

v unique for an SQL record

v duplicate for a non-SQL record

For additional considerations, see the information in

“I/O error values UNQ and DUP” on page 104.

IWN.MIG.0707.e Function functionName - Unable to

determine if item itemName is in a

record or map when used in IF, WHILE,

or TEST NULL statement; used

EZE_NULL.

Explanation: VisualAge Generator supports checking

for NULL for both a map item and an SQL item.

Checking a map item for NULL is equivalent to

checking it for blanks. Checking an SQL item for NULL

checks the null indicator variable to determine if the

column is null in the database. The equivalent EGL

statement is to check a form field for blanks and an

SQL field for null. The item specified in itemName is not

available during migration. The migration tool migrates

NULL to EZE_NULL to insure that validation and

generation will flag an error.

Note: The migration tool migrates the TEST statement

to an if statement.

User response: Edit the function and change

EZE_NULL to one of the following:

v blanks for a form field

v null for an SQL field

For additional considerations, see the information in

“Checking SQL and map items for NULL” on page 103.

IWN.MIG.0708.w Function functionName - Uses

EZESYS in statement other than IF,

WHILE, or TEST; old VAGen values

will be used.

Explanation: VisualAge Generator supports the use of

EZESYS in statements other than IF, WHILE, and TEST.

The migration tool migrates EZESYS based on the

statement type. In IF, WHILE, and TEST statements, the

migration tool converts EZESYS to sysVar.systemType

and also converts the values to the new EGL values.

For statements other than IF, WHILE, or TEST, the

migration tool converts to custPrefixEZESYS, where

custPrefix is the Renaming Prefix preference you set for

migration. When migrating programs, if the VAGen

Migration Preference Do not initialize old EZESYS values

is not selected, the migration tool includes a declaration

for custPrefixEZESYS and a statement to initialize

custPrefixEZESYS to the original VAGen values. The

original VAGen values will be used in this statement.

User response: Review the function and determine

whether you want to use the original VAGen values or

the new EGL values. If you want to use the new EGL

values, change custPrefixEZESYS to sysVar.systemType.

 If you want to use the original VAGen values and you

selected the VAGen Migration Preference Do not

initialize old EZESYS values during migration, you must

add a declaration and an initialization statement for

custPrefixEZESYS to any program that uses the

specified function. If you want to use the original

VAGen values and you did not select the VAGen

Migration Preference Do not initialize old EZESYS values,

no change is necessary. The declaration and

initialization statements for custPrefixEZESYS are

already included in all the migrated programs.

IWN.MIG.0801.e Program name programName is a

reserved word. It must be renamed.

Explanation: The migration tool does not rename

programs for you.

User response: You must change the name of the

program and all references to it, including references on

call, transfer, and show statements and references in

linkage option parts. Also change the names of any

bind control or linkedit parts that correspond to this

program. If you want to keep the original program

name as the name for the generated program, you can

specify the alias property. If you do not specify the alias

property, be sure to change any non-EGL references to

the program name, including CICS program definitions.

IWN.MIG.0802.w Program programName — Allows

implicit items. Migration does not create

definitions for implicit items.

Explanation: In VisualAge Generator, a program can

specify that it allows implicit data items. If a program

that allows implicit data items actually uses an item

378 Rational Software Development Platform: VisualAge Generator to EGL Migration Guide

without defining it, VisualAge Generator automatically

creates the definition for you at test and generation

time. EGL does not allow implicit items. The migration

tool does not create implicit definitions for you.

User response: Validate the program in VisualAge

Generator to determine if any implicit items are being

used. If so, VisualAge Generator provides the

definitions for the implicit items in the validation

messages. In EGL, edit the program definition and add

the corresponding EGL primitive field declarations. You

do not need to create a record to contain the fields. You

can add the primitive field declarations directly to the

program.

IWN.MIG.0804.w Program programName - Unable to

determine part type for I/O object

partName used with CLOSE I/O option;

record assumed.

Explanation: In VisualAge Generator, the I/O objects

are automatically included at test or generation time.

The CLOSE I/O option can be used for both records

and print maps. In EGL, records used in I/O

statements must be explicitly declared in the program.

Forms are not explicitly declared, but there must be a

use declaration for the formGroup. The CLOSE I/O

option is used in the specified program and the

specified partName is used as the I/O object for the

CLOSE. However, the specified partName is not

available during migration. The migration tool assumes

that the part is a record and includes the data

declaration.

User response: If the migration tool guesses

incorrectly, there will be an error in the Problems view.

Edit the program and remove the declaration for the

printForm.

IWN.MIG.0805.w Program programName - execution

mode not specified; nonsegmented

assumed.

Explanation: In VisualAge Generator, at some points

in time, the execution mode was not saved with the

program part. Execution mode only applies to main

transaction programs. The specified programName is a

main transaction program, but does not include the

execution mode in the external source format. The

migration tool assumes that the execution mode is

nonsegmented and includes the segmented=no

property in the EGL source.

User response: No action is required if the program

should run in nonsegmented mode. If the program

should run in segmented mode, edit the program and

change the segmented property to segmented=yes.

IWN.MIG.0806.w Program programName, use

declaration for tableName - preferences

caused deleteAfterUse=yes to be

omitted.

Explanation: The specified program contains a use

declaration for the specified table. In Cross System

Product and some releases of VisualAge Generator, the

keep after use flag determined when memory for a

table was freed by a program. The VisualAge Generator

keep after use flag is normally migrated to the EGL

deleteAfterUse property on the use declaration for the

table. However, your VAGen Migration Preferences

specified that the migration tool should not include the

deleteAfterUse property.

User response: None. If your VAGen programs were

generated using VisualAge Generator 4.5 FixPak 4, then

there should not be any difference in behavior. For

details, see information about deleteAfterUse in

“Eliminating the use of VisualAge Generator

Compatibility mode” on page 201.

IWN.MIG.0807.e Program programName - PSB

psbName is not available; DLI segment

records for the PSB cannot be

determined.

Explanation: In VisualAge Generator, all the DL/I

segment records specified in the program’s PSB are

automatically included at test or generation time

because they might be used in creating a default SSA or

explicitly used in a modified SSA. In EGL, the DL/I

segment records must be explicitly declared in the

program if they are used in a default SSA or explicitly

used in a modified SSA. The specified psbName is not

available during migration. Therefore, the migration

tool cannot determine whether any DL/I segment

records need to be added to the list of data declarations

for the program.

User response: Check the EGL Problems list for a

message about an ambiguous or unresolved DL/I

segment records for this function or a program. If there

is no message, this indicates that a declaration for the

DL/I segment record is already included for the

program (most likely as the result of I/O directly

against the DL/I segment record). If there is a message,

edit the program and add the declaration for the DL/I

segment record.

IWN.MIG.0808.e Called program programName - PSB

psbName is not available; PCB types

cannot be determined.

Explanation: In VisualAge Generator, EZEDLPCB[n]

where n is a numeric literal, is used to indicate a PCB

that is passed to a program as a parameter. VisualAge

Generator uses the PCB without regard to whether the

PCB is an I/O, alternate, database, or GSAM PCB.

EZEDLPCB[0] is always the I/O PCB and is not

explicitly listed in the VAGen PSB part. An error occurs

Appendix C. Messages from the migration tools 379

if the DL/I PCB is not of the correct type when the

PCB is used at runtime. In EGL, the PCB name from

the program’s PSB is used as the parameter name. The

PCB type must be explicitly specified for each program

parameter by giving the appropriate type definition

using a record name (IO_PCBRecord, ALT_PCBRecord,

DB_PCBRecord, or GSAM_PCBRecord). The migration

tool always uses IO_PCBRecord as the type definition

for EZEDLPCB[0]. The program programName specifies

one or more EZEDLPCB[n] parameters where n is

greater than 0. However, the specified psbName is not

available during migration. Therefore, the migration

tool cannot determine the type to include for the PCB

in the parameter list. The migration tool uses

EZE_UNKNOWN_PCB_TYPE for all the PCBs in the

parameter list.

User response: Locate the specified PSB. Edit the

program and change the type definitions to specify the

correct xxxx_PCBRecord based on the corresponding

PCB type in the specified EGL PSB part.

IWN.MIG.0809.e Called program programName - PSB

psbName is not available; PCB mapping

cannot be determined.

Explanation: In VisualAge Generator, EZEDLPCB[n]

where n is a numeric literal, is used to indicate a PCB

that is passed to a program as a parameter. VisualAge

Generator automatically associates EZEDLPCB[n] with

the corresponding PCB in the VAGen PSB part.

EZEDLPCB[0] is always the I/O PCB and is not

explicitly listed in the VAGen PSB part. An error occurs

if the DL/I PSB does not have the expected number of

PCBs at runtime. In EGL, the PCB name from the

program’s PSB is used as the parameter name. The

pcbParms property is used to explicitly associate each

PCB in the parameter list with the corresponding

position within the EGL PSB part. The program

programName specifies one or more EZEDLPCB[n]

parameters, but the specified psbName is not available

during migration. Therefore, the migration tool cannot

determine the number of PCBs to include in the

pcbParms property. The migration tool uses

EZE_UNKNOWN_PCB_MAPPING for the value of the

pcbParms property.

User response: Locate the specified PSB. Edit the

program and change the pcbParms property to provide

the mapping between the PCB parameters and the

PCBs in the specified EGL PSB part.

IWN.MIG.0810.e Called program programName -

parameter list references higher PCB

numbers than exist in PSB psbName;

PCB types and PCB mapping are not

complete.

Explanation: In VisualAge Generator, EZEDLPCB[n]

where n is a numeric literal, is used to indicate a PCB

that is passed to a program as a parameter. VisualAge

Generator automatically associates EZEDLPCB[n] with

the corresponding PCB in the VAGen PSB part. The

association is done without regard to whether the PCB

is an I/O, alternate, database, or GSAM PCB.

EZEDLPCB[0] is always the I/O PCB and is not

explicitly listed in the VAGen PSB part. A runtime error

occurs if the DL/I PSB does not have the expected

number of PCBs or if the DL/I PCB is not of the

correct type. In EGL, the PCB name from the program’s

PSB is used as the parameter name. The PCB type must

be explicitly specified for each program parameter by

giving the appropriate type definition using a record

name (IO_PCBRecord, ALT_PCBRecord,

DB_PCBRecord, or GSAM_PCBRecord). The migration

tool always uses IO_PCBRecord as the type definition

for EZEDLPCB[0]. In addition, the pcbParms property is

used to explicitly associate each PCB in the parameter

list with the corresponding position within the EGL

PSB part. The program programName specifies one or

more EZEDLPCB[n] parameters, but some of the values

for n are greater than the number of PCBs in the

specified psbName. Therefore, the migration tool cannot

determine the type definition to include for some of the

PCBs in the parameter list. The migration tool uses

EZE_UNKNOWN_PCB_TYPE for any PCB in the

parameter list that does not correspond to a PCB in the

specified psbName. In addition, the migration tool

cannot determine the number of PCBs to include in the

pcbParms property. The migration tool creates PCB

mapping information for all EZEDLPCB[n] parameters,

up to and including the highest value of n. However,

this list does not match the available PCBs in the

specified psbName.

User response: Locate the specified PSB. Review the

PSB and the program logic to determine which is

correct. Add any additional PCBs to the PSBRecord.

Edit the program and change the parameter type

definitions to specify the correct xxxx_PCBRecord based

on the corresponding PCB type in the specified EGL

PSB part. Also change the pcbParms property to provide

the correct mapping between the PCB parameters and

the PCBs in the specified EGL PSB part.

IWN.MIG.0811.w Program programName - does not

appear to use any maps; use statement

for formGroup formGroupName

commented out.

Explanation: VisualAge Generator requires that a

main transaction or called transaction program always

specify map group, even if the program does not use

any maps. In this situation, the map group part did not

have to exist. EGL does not require that a program

specify a formGroup unless the program actually uses a

form. The migration tool determined that the program

specifies a map group, but does not appear to use a

map as an I/O object, in an XFER with a map

statement, as a called parameter, or as the First Map of

the program. Therefore, the migration tool commented

out the use statement for the formGroup in the EGL

program. The migration tool also commented out the

380 Rational Software Development Platform: VisualAge Generator to EGL Migration Guide

use statement for the help formGroup if one was

present.

User response: None. However, if there are additional

functions for this program that were not included in

the migration set or in the external source file, these

functions might use maps from the specified map

group. If you need to use forms within the formGroup,

change the EGL program to uncomment the use

statement for the formGroup and help formGroup.

IWN.MIG.1001.e Generation options part partName is

a reserved word. It must be renamed.

Explanation: The migration tool does not rename

programs for you. Because a program might have a

special generation options part named as

programName.opt, the migration tool also does not

rename generation options parts.

User response: When you change the program name,

be sure to change the name of the corresponding

generation options part.

IWN.MIG.1002.w Generation options part partName -

/dbms=odbc is migrated to

dbms=″DB2″.

Explanation: The specified generation options part

includes the VAGen generation option /dbms=odbc.

EGL only supports DB2 or Oracle. The migration tool

converts /dbms=odbc to dbms=″DB2″ in the EGL build

descriptor part. EGL provides DB2 support by using a

JDBC driver. If you have a JDBC driver for your

database, you might be able to use the build descriptor

option dbms=″DB2″ as the database type.

Note: In EGL, Oracle is supported only if you use Java

generation.

User response: Be sure to migrate, generate, and test a

variety of VAGen programs that used ODBC support to

ensure that all the functions you require work correctly

with your JDBC driver.

IWN.MIG.1003.e Generation options part partName -

/system=systemType is not supported.

Explanation: The specified generation options part

includes the VAGen /system generation option and

specifies a runtime environment that is not supported

by EGL. The migration tool converts the /system

generation option to a comment in the EGL build

descriptor part.

User response: Determine whether this build

descriptor part is used by other build descriptor parts.

If not, you can delete the build descriptor part.

Alternatively, you might want to keep the build

descriptor part for reference if EGL supports this

runtime environment at sometime in the future.

IWN.MIG.1004.w Generation options part partName -

/system=systemType requires that

destPort be set.

Explanation: The specified generation options part

includes the /system generation option and specifies a

COBOL runtime environment. The EGL build process

requires you to specify a destination port using the

destPort build descriptor option.

User response: Modify the build descriptor part that

corresponds to the generation options part and include

the destPort build descriptor option. Consider the

following when specifying the value of destPort:

v For z/OS environments, there is no default value for

destPort. You must add the destPort build descriptor

option and the value must match the value you are

use in the JCL that starts the z/OS build server. The

sample JCL for starting a z/OS build server uses

port 5555.

v For iSeries environments, there is no default value

for destPort. You must add the destPort build

descriptor option. The value must match the value

used by the iSeries build server.

v For VSE environments, the default value for destPort

is 21. You only need to specify the destPort build

descriptor option if the value is different from 21.

IWN.MIG.1005.e Generation options part partName -

/system=systemType is not currently

supported.

Explanation: The specified generation options part

includes the VAGen /system generation option and

specifies a runtime environment that is not currently

supported by EGL. The migration tool converts the

/system generation option to the EGL build descriptor

option for future use. However, because the runtime

environment is not currently supported by EGL, the

value will not appear in the Build Descriptor Parts

Editor. You can see the value by using a text editor.

User response: None. You should keep this build

descriptor part for possible use in future releases of

EGL.

IWN.MIG.1099.e Control part partName - symparm

symparmName is not supported.

Explanation: The specified control part uses or sets a

symparm which is not supported in EGL. The

migration tool migrates the symparm ″as is″ using the

original VAGen symparm name. However, this

symparm is not set during generation.

User response: Modify the control part to set a default

value for the symparm. Alternatively, modify the

control part so that it no longer uses the specified

symparm.

Appendix C. Messages from the migration tools 381

IWN.MIG.1101.e Linkage table part partName is a

reserved word. It must be renamed.

Explanation: The migration tool does not rename

control parts for you.

User response: Modify the linkage options part name

so that it is not a reserved word. When you change the

linkage options part name, be sure to change all the

build descriptor parts that reference the linkage options

part.

IWN.MIG.1102.e Linkage table partName -

/contable=BINARY is not supported. It

must be changed.

Explanation: VisualAge Generator supports

/contable=BINARY in the linkage table part. EGL does

not support this value. The migration tool includes the

conversionTable=″BINARY″ value in the EGL linkage

options part. This value is invalid, but will not be

detected until generation.

User response: You must change the conversionTable

value to a value that is supported by EGL. Refer to the

information about linkage options parts in the online

helps for details about the EGL conversionTable

attribute and the options that are available.

IWN.MIG.1103.e Linkage table part partName -

/remotecomtype=CICSCLIENT is not

supported. Defaulted to CICSECI.

Explanation: VisualAge Generator supports

/remotecomtype=CICSCLIENT in the linkage table

part. EGL does not support this value. The migration

tool includes the remoteComType=″CICSECI″ in the

EGL linkage options part. This value is valid, but might

not be what you plan to use. If you want to use

CICSECI, you need to set the ctgPort and ctgLocation.

User response: If you plan to use CICSECI, modify

the linkage options part and set the values of ctgPort

and ctgLocation for the entry that specifies CICSECI as

the remoteComType. If you do not plan to use

CICSECI, refer to the information about linkage options

parts in the online helps for details about the EGL

remoteComType attribute and the options that are

available in EGL.

IWN.MIG.1104.e Linkage table part partName -

/remotecomtype=communicationType is

not supported. It must be changed.

Explanation: VisualAge Generator supports

/remotecomtype=communicationType in the linkage table

part. EGL does not support this communications

protocol. The migration tool includes the

remoteComType=″communicationType″ in the EGL

linkage options part. This value is not valid and must

be changed.

User response: Determine the communication protocol

that you plan to use. Then edit the part and change the

remoteComType to a value that is supported by EGL.

Refer to the information about linkage options parts in

the online helps for details about the EGL

remoteComType attribute and the options that are

available in EGL.

IWN.MIG.1201.e Resource association part partName

is a reserved word. It must be renamed.

Explanation: The migration tool does not rename

control parts for you.

User response: Modify the resource association part

name so that it is not a reserved word. When you

change the resource associations part name, be sure to

change all the build descriptor parts that reference the

resource association part.

IWN.MIG.1202.e Resource association part partName -

/filetype=fileType is not supported. It

must be changed.

Explanation: VisualAge Generator supports

/filetype=BTRIEVE and /filetype=MFCOBOL for some

workstation environments. EGL does not support these

file types. The migration tool includes the filetype

information in the EGL resource association part. The

value is invalid and will cause an error in the Problems

view.

User response: You must change the filetype value to

a value that is supported by EGL. Refer to the

information about resource association parts in the

online helps for details about the EGL filetype attribute

and the options that are available.

IWN.MIG.1203.e Resource association part partName -

/system is targetSystem, which is not

supported; migrated based on /filetype

fileType information.

Explanation: The resource association part contains an

entry that uses the specified targetSystem. This target

system is not supported in EGL. The migration tool

migrates the resource association entry based on the

fileType. For example, if the targetSystem is mvs* and

the fileType is transient, the migration tool creates an

EGL resource association entry and sets the EGL system

to mvs*. This will be invalid and result in an error in

the Problems view. You can correct the entry by

specifying a valid EGL system (zoscics for this

example).

User response: If there is an error in the Problems

view, correct the entry in the resource associations part

by specifying a valid target system.

382 Rational Software Development Platform: VisualAge Generator to EGL Migration Guide

IWN.MIG.1301.e Linkedit part partName is a reserved

word. It must be renamed.

Explanation: The migration tool does not rename

programs for you. Because the program name must

match its corresponding linkedit part, the migration

tool also does not rename the linkedit part.

User response: When you change the program name,

be sure to change the name of the corresponding

linkedit part.

IWN.MIG.1401.e Bind control part partName is a

reserved word. It must be renamed.

Explanation: The migration tool does not rename

programs for you. Because the program name must

match its corresponding bind control part, the

migration tool also does not rename the bind control

part.

User response: When you change the program name,

be sure to change the name of the corresponding bind

control part.

Messages from the VisualAge Generator to EGL migration tool—Stage

3

The only messages produced by Stage 3 are trace and information messages.

IWN.MIG.0030.i Migration set Name_version -- import

analysis started.

Explanation: This is an information message to

indicate status from the migration tool.

User response: None.

IWN.MIG.0031.i Migration set Name_version -- import

analysis completed.

Explanation: This is an information message to

indicate status from the migration tool.

User response: None.

IWN.MIG.0032.i Migration set Name_version -- not

processed for Stage 3.

Explanation: This is an information message to

indicate status from the migration tool. The specified

migration set version was not processed during Stage 3.

This is because another version of the migration set is

imported into the workspace. For example, you

requested to import the latest version of the migration

sets and the specified version is not the latest version

of the specified migration set.

User response: None.

Appendix C. Messages from the migration tools 383

384 Rational Software Development Platform: VisualAge Generator to EGL Migration Guide

Appendix D. Messages in the Problems view

In an ambiguous situation, the migration tool is not always able to determine the

correct EGL syntax to build during migration. This typically occurs when an

associated part is not available during migration. In these cases, the migration tool

sometimes creates intentionally invalid EGL syntax so that an error will appear in

the Problems view. The table below lists the specific text string that will cause an

error in EGL validation. The specific EGL error message might vary, but the text

string listed in the left column will appear near the EGL statement that is flagged

as an error. Whenever the migration tool includes these text strings, the tool also

issues a message to the migration log.

 Table 160. VAGen migration text that causes EGL syntax or validation errors

VAGen migration text in EGL syntax Problem and Solution

###KEYS_NOT_FOUND### Problem: The current SQL record embeds another record’s structure.

During migration the record named on the embed statement was not

available. Any key item specified for the current SQL record in

VAGen is included in the keyItems property, but the keys from the

embedded record are missing.

Solution: Find the EGL record named on the embed statement.

Replace the ###KEYS_NOT_FOUND### text with the keys listed in

the embedded SQL record. Be sure to merge the embedded record

keys with the current record’s key item in the order that the fields

appear in the record structure of the embedded record. If the current

record’s key item is also specified in the keyItems property of the

embedded record, only include the field once in the EGL keyItems

property.

###TABLES_NOT_FOUND### Problem: The current SQL record embeds another record’s structure.

During migration the record named on the embed statement was not

available.

Solution: Find the EGL record named on the embed statement and

copy the tableNames and tableNameVariables properties into the current

SQL record.

EZE_DUPLICATE Problem: The record named on a VAGen IF, WHILE, or TEST

statement was not available during migration.

Solution: Find the EGL record named on the EGL if or while

statement. Change EZE_DUPLICATE to one of the following:

v duplicate for a non-SQL record

v unique for an SQL record

EZE_NULL Problem: The migration tool could not determine whether the item

named on a VAGen IF, WHILE, or TEST statement is in an SQL

record or on a map.

Solution: Review the program and determine whether the field is in

an SQL record or on a form. Replace EZE_NULL with null for an SQL

field or blanks for a form field.

© Copyright IBM Corp. 2004, 2006 385

Table 160. VAGen migration text that causes EGL syntax or validation errors (continued)

VAGen migration text in EGL syntax Problem and Solution

EZE_SETPAGE(); Problem: The map named on a VAGen SET map PAGE statement

was not available during migration.

Solution: Find the form named on the // VAGen Info comment that

accompanies the EZE_SETPAGE() statement. Change EZE_SETPAGE

to one of the following:

v clearScreen() for a text form

v pageEject() for a print form

EZE_UNKNOWN_PARTTYPE Problem: The External Source Format stored in the migration

database was not valid. The migration tool was not able to determine

the part type and was not able to convert the part to EGL syntax.

Solution: The part named on the EZE_UNKNOWN_PARTTYPE

statement is not valid. If this problem only occurs for a few parts, try

exporting External Source Format from VisualAge Generator and

migrating these parts in single file mode.

If you created your own tool to load the migration database, there

might be a problem with the way the tool is loading External Source

Format code into the migration database. See Appendix G, “Migration

Database,” on page 413 for some queries that might be useful in

determining what is causing the problem.

EZE_UNKNOWN_PCB_MAPPING Problem: The PSB part specified for the program was not available

during migration. The migration tool was not able to determine the

values to specify for the pcbParms property.

Solution: Find the data declaration in the program for the variable

named psb. The type definition that is specified for psb is the name of

the EGL PSBRecord part for the program. Change the pcbParms

property for the program to map the input PCB parameters to the

corresponding PCBs within the EGL PSBRecord part. For additional

details, see message IWN.MIG.0809.e (on page 380).

EZE_UNKNOWN_PCB_TYPE Problem: The PSB part specified for the program was not available

during migration or contained fewer PCBs than specified by the

program’s parameter list. The migration tool was not able to

determine the type definitions to use for the PCB parameters for the

program. Each PCB in the parameter list is pcbn, where n is a

numeric literal that corresponds to a PCB in the PSB part.

Solution: Find the data declaration in the program for the variable

named psb. The type definition that is specified for psb is the name of

the EGL PSBRecord part for the program. Change the PCB

parameters for the program to specify the correct type definition

record (IO_PCBRecord, ALT_PCBRecord, DB_PCBRecord, or

GSAM_PCBRecord) based on the type definition for the

corresponding PCB in the PSB part. For additional details, see

message IWN.MIG.0808.e (on page 379).

386 Rational Software Development Platform: VisualAge Generator to EGL Migration Guide

Table 160. VAGen migration text that causes EGL syntax or validation errors (continued)

VAGen migration text in EGL syntax Problem and Solution

EZE_UNKNOWN_QUALIFIER Problem: The current Segment Search Argument (SSA), contains an

EGL host variable (VAGen comparison value item) that is not

qualified. The DL/I segment record or its alternate specification

record for the SSA was not available during migration. Alternatively,

the record was available but did not contain the comparison value

item. The migration tool was not able to determine the qualifier for

the EGL host variable.

Solution: Find the DL/I segment record or its alternate specification

record for the current SSA. Determine whether the host variable is an

item in the record. If so, change the qualifier for the host variable to

the DL/I segment record name. If not, determine the correct qualifier

to use. For additional details on how to determine the correct

qualifier, see message IWN.MIG.0611.e (on page 376)

EZE_UNKNOWN_RELOP Problem: The modified DL/I statement used a relational operator

that is invalid. This can occur due to a problem in VisualAge

Generator that caused it to store an incorrect value for the relational

operator. The migration tool was not able to determine the correct

relational operator.

Solution: Use the DL/I Call Editor in VisualAge Generator to review

the SSAs for the specified function. The correct operator is shown in

the DL/I Call Editor even though it is stored incorrectly in the

External Format File for the function. Edit the function in EGL and

change EZE_UNKNOWN_RELOP to the correct value.

Note: The most likely operators to cause the problem are the symbols

used for not equal. The symbol for not equal in an EGL SSA is !=.

EZE_UNKNOWN_RETURN_COLUMN Problem: The VAGen table named on the VAGen RETR statement

was not available during migration.

Solution: Find the EGL dataTable named on the assignment statement

and replace EZE_UNKNOWN_RETURN_COLUMN with the name of

the second column in the dataTable.

EZE_UNKNOWN_SEARCH_COLUMN Problem: The VAGen table named on the VAGen FIND or RETR

statement was not available during migration.

Solution: Find the EGL dataTable named on the if statement and

replace EZE_UNKNOWN_SEARCH_COLUMN with the name of the

first column in the dataTable.

EZE_UNKNOWN_SQLTABLE Problem: The SQL record named as the I/O object was not available

during migration. The migration tool was not able to determine the

correct tables clause for the EGL I/O statement.

Solution: Find the record named on the I/O statement and determine

the correct tables clause from the record’s tableNames and / or

tableNameVariables properties.

Appendix D. Messages in the Problems view 387

Table 160. VAGen migration text that causes EGL syntax or validation errors (continued)

VAGen migration text in EGL syntax Problem and Solution

EZE_UNKNOWN_SQL_FORUPDATEOF Problem: VisualAge Generator created a default for update of clause

for the SQL UPDATE or SETUPD I/O option. The SQL record named

as the I/O object was not available during migration. Therefore, the

migration tool was not able to determine the correct for update of

clause for the EGL I/O statement.

Solution: Find the record named on the I/O statement and determine

the correct for update of clause from the record’s list of fields. The

default for update of clause in VisualAge Generator is the list of

column names from the record in the same order as the fields are

listed in the record, but omitting the following:

v Any column name that is listed in the EGL keyItems property for

the record.

v Any column name that is specified with the EGL isReadOnly=yes

property.

If the record named on the I/O statement embeds another SQL

record, do the following:

v Use the record named on the embed statement to determine the

order of the columns and the isReadOnly=yes property.

v Use the record named on the I/O statement (the embedding

record) to determine the keyItems property.

If the for update of clause is used in an EGL prepare statement, enclose

the list of column names within double-quotes.

EZE_UNKNOWN_SQL_INSERTCOLNAME Problem: VisualAge Generator created a default list of columns for

the SQL ADD I/O option. The SQL record named as the I/O object

was not available during migration. Therefore, the migration tool was

not able to determine the correct list of column names for the EGL

add statement.

Solution: Find the record named on the I/O statement and determine

the correct list of columns from the record’s list of fields. The default

list of column names in VisualAge Generator is the list of column

names from the record in the same order as the fields are listed in the

record, but omitting any column name that is specified with the EGL

isReadOnly=yes property. If the record named on the I/O statement

embeds another record, use the record named on the embed

statement to determine the order of the columns and the

isReadOnly=yes property. This list of column names is never used in

an EGL prepare statement.

EZE_UNKNOWN_SQL_INTO Problem: VisualAge Generator created a default list of data items for

the into clause for the SQL INQUIRY, SETINQ, UPDATE, or SETUPD

I/O option. The SQL record named as the I/O object was not

available during migration. Therefore, the migration tool was not able

to determine the correct into clause for the EGL I/O statement.

Solution: Find the record named on the I/O statement and determine

the correct list of fields for the into clause. The default list of fields in

VisualAge Generator is the list of fields from the record in the same

order as the fields are listed in the record. If the record named on the

I/O statement embeds another record, use the record named on the

embed statement to determine the order of the fields. The into clause is

never used in an EGL prepare statement.

388 Rational Software Development Platform: VisualAge Generator to EGL Migration Guide

Table 160. VAGen migration text that causes EGL syntax or validation errors (continued)

VAGen migration text in EGL syntax Problem and Solution

EZE_UNKNOWN_SQL_SELECT Problem: VisualAge Generator created a default list of columns for

the select clause for the SQL INQUIRY, SETINQ, UPDATE, or

SETUPD I/O option. The SQL record named as the I/O object was

not available during migration. Therefore, the migration tool was not

able to determine the correct select clause for the EGL I/O statement.

Solution: Find the record named on the I/O statement and determine

the correct list of column names for the select clause. The default list

of column names in VisualAge Generator is the list of column names

from the record in the same order as the fields are listed in the

record. If the record named on the I/O statement embeds another

record, use the record named on the embed statement to determine the

order of the columns. If the select clause is used in an EGL prepare

statement, enclose the list of column names within double-quotes.

EZE_UNKNOWN_SQL_VALUES Problem: VisualAge Generator created a default list of data items to

provide the values for the SQL ADD I/O option. The SQL record

named as the I/O object was not available during migration.

Therefore, the migration tool was not able to determine the correct list

of field names for the values clause of the EGL add statement.

Solution: Find the record named on the I/O statement and determine

the correct list of fields from the record’s list of fields. The default list

of field names in VisualAge Generator is the list of fields from the

record in the same order as the fields are listed in the record, but

omitting any field that is specified with the EGL isReadOnly=yes

property. If the record named on the I/O statement embeds another

record, use the record named on the embed statement to determine the

order of the fields and the isReadOnly=yes property. The values clause

is never used in an EGL prepare statement.

Appendix D. Messages in the Problems view 389

390 Rational Software Development Platform: VisualAge Generator to EGL Migration Guide

Appendix E. IWN.xxx messages in the Problems view

Some IWN.SYN, IWN.VAL, and IWN.XML messages are more likely to occur for

EGL source code that was migrated from VisualAge Generator than for code that

you develop completely within EGL. This section lists messages that have a special

meaning for migrated code.

If there are numerous errors in a file, it is best to resolve the errors in the following

order:

v IWN.SYN messages for invalid syntax. These messages are typically the result of

one of the following:

– An EGL reserved word used as the name of a program, formGroup, form, or

dataTable that cannot be renamed by the migration tool.

– Deliberately invalid syntax used by the migration tool. See Appendix D,

“Messages in the Problems view,” on page 385 for details on resolving these

errors.
v IWN.VAL messages for a part that cannot be resolved or is ambiguous,

including messages such as IWN.VAL.3260.e, IWN.VAL.6619.e, and

IWN.VAL.6620.e.

v IWN.VAL warning messages for a statement that indicate there is a field with

the same name as another record, form, or dataTable, including messages such

as IWN.VAL.6570.w, IWN.VAL.6571.w, and IWN.VAL.6621.w.

v Other messages.

Note: EGL produces a maximum of 40 messages per file. Therefore, you might

need to clear some messages, save the file, and rebuild the workspace before

you can see additional messages.

IWN.VAL messages

IWN.VAL.3012.e The same name recordName also

appears as variable, parameter, use or

constant declaration in Function,

Program, or Library programName.

Explanation: VisualAge Generator tolerated specifying

the same record name in the parameter list and in the

Tables and Additional Records list. In this situation,

VisualAge Generator ignored the record in the Tables

and Additional Records list.

User response: Edit the program and remove the

record declaration.

IWN.VAL.3260.e The type partName cannot be

resolved.

Explanation: The specified part cannot be found. The

meaning for migrated VAGen code varies based on the

context as described under User response.

User response: The meaning varies based on context

as follows:

v partName is a record used as a type definition in the

program’s record declarations list. Check to see if

there is a record named partName_level77Suffix, where

_level77Suffix is preference you specified during Stage

2 of migration. VisualAge Generator tolerates

working storage records that contain only level 77

items on the program’s Tables and Additional

Records list. However, these level 77 items cannot be

referenced in the program. Only level 77 items in the

program’s primary working storage record can be

referenced in the program. Because the record only

contained level 77 items, the migration tool only

created a level 77 item when it migrated the record.

If this is the case, edit the program and delete the

declaration for the original record name. Do not add

the corresponding level 77 record because none of its

items were referenced in the VAGen program.

v partName is used as the help formGroup. The VAGen

program specified a help map group, but none of the

maps that the program converses specifies a help

map. Edit the program. Either remove the use

© Copyright IBM Corp. 2004, 2006 391

statement for the help formGroup or add an import

statement for the package containing the help

formGroup.

v partName is used as the segmentRecord or

parentSegment property in a PSBRecord. VisualAge

Generator does not issue an error message for a

missing DL/I segment record in the PSB unless the

segment is actually used in a program for DL/I I/O

or to build a default SSA for a lower level segment.

In EGL, all DL/I segment records referenced in the

PSB must be defined. Review the PSBRecord and the

logic for all the programs that use the PSB. If the

PCB that specifies the missing DL/I segment record

is only used as a place holder to pass through to a

non-EGL program, consider changing the PCB to

remove the hierarchy information. Alternatively,

create or import the missing DLISegment record

definition.

IWN.VAL.4300.e The part named partName could not

be resolved or did not resolve to one of

the following types: partTypeList

Explanation: The meaning for migrated VAGen code

varies based on the context as described under User

response.

User response: The meaning varies based on the

context as follows:

v The specified control part does not exist. Create the

part or remove the reference to it.

v The specified control part is in a different project or

package from the control part that has the error. The

migration tool does not create import statements for

control parts because control parts do not have

associates in VisualAge Generator. If the specified

control part is in a different project, update the EGL

Build Path in the current project’s properties to

include the project where the specified control part

resides. If the specified control part is in a different

package, edit the current .eglbld file to add an

import statement for the package where the specified

control part resides.

v The XML parser was not able to completely process

the .eglbld file. In this case, the specified control part

might exist in the same file as the control part that

has the error. Check for message IWN.XML.3999.e

XML Validation Error - Attribute ″xxxxx″ was already

specified for element ″yyyyy″. This message indicates

that the attribute xxxxx is specified multiple times in

the same control part. Edit the current .eglbld file so

that there is only one specification for xxxxx in the

control part. Assuming that you have Build

Automatically selected, when you save the .eglbld

file, the message in the Problems view should be

updated. Because the XML parser stops processing at

the first duplicate attribute in the .eglbld file, you

might have to resolve several errors before the entire

file can be parsed. When all the IWN.XML.3999.e

messages have been resolved, the specified control

part should be available if it is in the same .eglbld

file as the referencing control part.

IWN.VAL.4925.e The variable declaration recordName

for programName could not be resolved.

Explanation: If the program uses DL/I, the specified

recordName might be the name of a DL/I segment

specified in the program’s PSBRecord. In VisualAge

Generator, all DL/I segments specified in the program’s

PSB are considered to be associates of the program.

This ensures that any DL/I segment that might be used

in a default SSA is available to the program. However,

VisualAge Generator does not issue an error message

for a missing DL/I segment record unless the segment

is actually used for DL/I I/O or to build a default SSA

for a lower level segment. The migration tool

automatically adds a declaration to the program for

each DL/I segment record in the program’s PSB.

User response: Review the program to determine

whether the DL/I segment record is needed. If the

record is not used and is not required to build default

SSAs for lower level segments, then edit the program

and remove the record declaration.

IWN.VAL.5004.e The data table tableName is defined

with n1 column(s), but the contents are

defined with n2 column(s).

Explanation: The number of validly defined columns

in the dataTable does not match the list of contents.

One of the following might have occurred:

v One or more of the fields is defined with a type

definition, but the type definition cannot be resolved.

v In VisualAge Generator, you used a comma as the

decimal separator for numeric fields. EGL always

uses the period. The migration tool converts the

comma to decimal if you select the VAGen Migration

Syntax Preference Change decimal comma to decimal

point.

User response: If one of the fields has a type

definition that cannot be resolved, correct that problem

first and rebuild the project containing the dataTable. If

there are still problems and you used a comma as the

decimal separator in VisualAge Generator, review the

preference setting. Save the import statements from the

file containing the dataTable, then migrate the table

again using Single File Mode to correct the table

contents, then add the import statements to the file.

IWN.VAL.5052.e programName - Fixed records are not

allowed in comparisons.

Explanation: In general, this error occurs when there

is a field in a record, form, or dataTable with the same

name as a record. In VisualAge Generator, the name

resolution is context sensitive so that the name resolves

to the field. In EGL, the name resolves to the record,

but a fixed record is not permitted for this type of

392 Rational Software Development Platform: VisualAge Generator to EGL Migration Guide

comparison. Note that all VAGen records migrate to

EGL fixed records.

User response: If the problem is caused by name

resolution, qualify the field name with the name of the

record, form, or dataTable that contains the field. See

the User response for message IWN.VAL.6621.w for

information about how to confirm that name resolution

is the problem and how to determine the possible

qualifiers.

IWN.VAL.5085.e programName - The element

operandName is not valid for use in the

expression.

Explanation: In general, this error occurs when there

is a field in a record, form, or dataTable with the same

name as another record, form, or dataTable. In

VisualAge Generator, the name resolution is context

sensitive so that the name resolves to the field for an

arithmetic expression. In EGL, the name resolves to a

record, form, or dataTable, but these are not permitted

for an arithmetic expression.

User response: If the problem is caused by name

resolution, qualify operandName with the name of the

record, form, or dataTable that contains the field. See

the User response for message IWN.VAL.6621.w for

information about how to confirm that name resolution

is the problem and how to determine the possible

qualifiers.

IWN.VAL.5089.e programName - operandName1 is not

valid for compare to operandName2.

Explanation: In general, this error occurs when there

is a field in a record, form, or dataTable with the same

name as another record, form, or dataTable. In

VisualAge Generator, the name resolution is context

sensitive so that the name resolves to the field for this

type of comparison. In EGL, the name resolves to a

record, form, or dataTable, but these are not permitted

for this type of comparison. The name resolution

problem can occur due a name conflict for either

operandName1 or operandName2.

User response: If the problem is caused by name

resolution, qualify operandName1 or operandName2 with

the name of the record, form, or dataTable that contains

the field. See the User response for message

IWN.VAL.6621.w for information about how to confirm

that name resolution is the problem and how to

determine the possible qualifiers.

IWN.VAL.5090.e programName - The operand

operandName in the in condition must be

an item or a literal.

Explanation: In general, this error occurs when there

is a field in a record, form, or dataTable with the same

name as another record, form, or dataTable. In

VisualAge Generator, the name resolution is context

sensitive so that the name resolves to the field for the

FIND, RETR, IF x IN array, or WHILE x IN array

statements. In EGL, the name resolves to a record,

form, or dataTable, but these are not permitted for an if

x in or while x in statement. Note that both the VAGen

FIND and RETR statements migrate to an EGL if x in

structuredFieldArray statement.

User response: If the problem is caused by name

resolution, qualify operandName with the name of the

record, form, or dataTable that contains the field. See

the User response for message IWN.VAL.6621.w for

information about how to confirm that name resolution

is the problem and how to determine the possible

qualifiers.

IWN.VAL.5093.e programName - The operand

operandName in the is/not condition must

be a text form field.

Explanation: In general, this error occurs when there

is a field in a form with the same name as another

record, form, or dataTable. In VisualAge Generator, the

name resolution is context sensitive so that the name

resolves to the map field for statements such as IF x IS

CURSOR or IF x NOT DATA. In EGL, the name

resolves to a record, form, or dataTable, but these are

not permitted for this type of if statement.

User response: If the problem is caused by name

resolution, qualify operandName with the name of the

form that contains the field. See the User response for

message IWN.VAL.6621.w for information about how

to confirm that name resolution is the problem and

how to determine the possible qualifiers.

IWN.VAL.5094.e programName - operandName is

invalid for the current is/not expression.

Variable Text Form fields, CHAR,

MBCHAR, DBCHAR and UNICODE are

valid types for use with the mnemonic

blanks.

Explanation: In general, this error occurs when there

is a field in a record, form, or dataTable with the same

name as another record, form, or dataTable. In

VisualAge Generator, the name resolution is context

sensitive so that the name resolves to the field for the

IF x IS BLANKS statement. In EGL, the name resolves

to a record, form, or dataTable, but these are not

permitted for the if x is blanks statement. Note that

the VAGen mnemonics BLANK, BLANKS, and NULLS

migrate to the EGL mnemonic blanks. The VAGen

mnemonic NULL migrates to the EGL mnemonic

blanks if the comparison is for a map field and to null

if the comparison is for an SQL field. See “Checking

SQL and map items for NULL” on page 103 for details.

User response: If the problem is caused by name

resolution, qualify operandName with the name of the

record, form, or dataTable that contains the field. See

the User response for message IWN.VAL.6621.w for

Appendix E. IWN.xxx messages in the Problems view 393

information about how to confirm that name resolution

is the problem and how to determine the possible

qualifiers.

IWN.VAL.5095.e programName - The operand

operandName in the is/not condition is

not valid for use with the mnemonic

null.

Explanation: In general, this error occurs when there

is a field in an SQL record with the same name as

another record, form, or dataTable. In VisualAge

Generator, the name resolution is context sensitive so

that the name resolves to the field for the IF x IS NULL

statement. In EGL, the name resolves to a record, form,

or dataTable, but these are not permitted for the if x is

null statement. Note that the VAGen mnemonic NULL

migrates to the EGL mnemonic blanks if the

comparison is for a map field and to null if the

comparison is for an SQL field. See “Checking SQL and

map items for NULL” on page 103 for details.

User response: If the problem is caused by name

resolution, qualify operandName with the name of the

record or form that contains the field. See the User

response for message IWN.VAL.6621.w for information

about how to confirm that name resolution is the

problem and how to determine the possible qualifiers.

IWN.VAL.5100.e xxxxx is an invalid qualifier for the

yyyyy system word.

Explanation: An EZE word that was valid in

VisualAge Generator is not currently supported by

EGL. The migration tool migrates the EZE word,

making a ″best guess″ as to what the EGL replacement

might be in the future. This preserves your program

logic.

User response: Edit the function and make logic

changes so that this system word is no longer used.

Alternatively, create a new project to preserve migrated

functions that cannot currently be used. Move all

functions that contain VAGen values that are not

currently supported to this new project.

IWN.VAL.5101.e mainFunctionName It is invalid to

use the xxxxx system word in this

statement location.

Explanation: The program that uses that uses the

specified main function in turn invokes other functions.

One of the functions in the function invocation chain

uses the specified system word in a statement. The

migration tool always qualifies the EGL system words

that are replacements for the VAGen EZE words. If the

xxxxx system word is not qualified with sysLib, sysVar,

mathLib, strLib, VGLib, VGVar, converseLib,

converseVar, dliLib, dliVar, or javaLib, the most likely

causes are as follows:

v The VAGen program permitted implicit data items

and the definition of xxxxx was automatically created

during generation. EGL does not permit implicit data

items. The migration tool also does not create

implicit data item definitions for you.

v The record, map, or table was not included in the

migration set so the migration tool could not include

the necessary import statement in the program.

User response: Check whether the VAGen program

allowed implicit items. If so, validate the program in

VisualAge Generator. There will be a message on the

VAGen View Messages list that provides the correct

definition of the implicit data item. Add the definition

for the data item to the declarations section of the

program.

 If the VAGen program did not allow implicit items,

create an associates list for the program in VisualAge

Generator. From the associates list, use the VAGen

References tool to search for the specified data item.

The results of the References tool provide a clue to

which record, map, or table might be missing from the

migration set.

IWN.VAL.5143.e programName - operandName is

invalid for the current is/not expression.

CHAR, MBCHAR, and STRING are the

only valid types for use with the

mnemonic numeric.

Explanation: In general, this error occurs when there

is a field in a record, form, or dataTable with the same

name as another record, form, or dataTable. In

VisualAge Generator, the name resolution is context

sensitive so that the name resolves to the field for the

IF x IS NUMERIC statement. In EGL, the name resolves

to a record, form, or dataTable, but these are not

permitted for the if x is numeric statement.

User response: If the problem is caused by name

resolution, qualify operandName with the name of the

record, form, or dataTable that contains the field. See

the User response for message IWN.VAL.6621.w for

information about how to confirm that name resolution

is the problem and how to determine the possible

qualifiers.

IWN.VAL.5168.e xxxxx is not valid for use within an

Is/Not expression.

Explanation: The specified value is not valid. The

meaning for migrated VAGen code varies based on the

context as described under User response.

User response: The meaning varies based on context

as follows:

v If the value is a system type such as AIXCICS or

TSO, the value was a valid value for EZESYS in

VisualAge Generator. This value has no

corresponding value in EGL. The migration tool

migrates the VAGen values to preserve your

394 Rational Software Development Platform: VisualAge Generator to EGL Migration Guide

program logic. Edit the function and make logic

changes so that this value is no longer used.

Alternatively, create a new project to preserve

migrated functions that cannot currently be used.

Move all functions that contain VAGen values that

are not currently supported to this new project.

v If the value is EZE_DUPLICATE or EZE_NULL, the

migration tool was not able to determine how to

migrate the statement because the associated part

was not included in the migration set. See

Appendix D, “Messages in the Problems view,” on

page 385 for details and solutions.

IWN.VAL.5177.e programName - The operand

operandName in the is/not condition must

be an item in a SQLRecord.

Explanation: In general, this error occurs when there

is a field in an SQL record with the same name as

another record, form, or dataTable. In VisualAge

Generator, the name resolution is context sensitive so

that the name resolves to the field for statements such

as IF x IS TRUNC. In EGL, the name resolves to a

record, form, or dataTable, but these are not permitted

for statements such as if x is trunc.

User response: If the problem is caused by name

resolution, qualify operandName with the name of the

SQL record that contains the field. See the User

response for message IWN.VAL.6621.w for information

about how to confirm that name resolution is the

problem and how to determine the possible qualifiers.

IWN.VAL.5196.e programName - Invalid for count

countName. The for count must be an

integer item or literal.

Explanation: In general, this error occurs when there

is a field in a record, form, or dataTable with the same

name as another record, form, or dataTable. In

VisualAge Generator, the name resolution is context

sensitive so that the name resolves to the field for the

count in a MOVEA statement. In EGL, the name

resolves to a record, form, or dataTable, but these are

not permitted as the for count in a move statement.

User response: If the problem is caused by name

resolution, qualify countName with the name of the

record, form, or dataTable that contains the field. See

the User response for message IWN.VAL.6621.w for

information about how to confirm that name resolution

is the problem and how to determine the possible

qualifiers.

IWN.VAL.5340.e Property: position. The value for

this property for field fieldName in

formName is invalid. The value must be

in the format [row, column], where row

and column are positive integers.

Explanation: VisualAge Generator tolerates map fields

at row=0, column=0. The field cannot specify any

attributes and uses the same attributes as the previous

field on the map. EGL requires that every field have an

attribute byte. If a constant field at row=0, column=0

begins with a blank, the migration tool adjusts the field

position by removing the first character and changing

the position to row=1, column=1. This field is either a

constant field (fieldName is *) does not contain a blank

as the first character or is a variable field.

User response: Use the EGL Editor to change the

form. Adjust the length, position, value, and other

properties of the field as necessary so the field fits on

the form. Add presentation properties to achieve the

same appearance for the field as it had in VisualAge

Generator. After you have made these changes, you can

use the EGL Form Editor to make future changes to the

form.

IWN.VAL.6503.e The xxxxx SQL I/O statement has

clauses that are out of order. yyyyy must

appear before the zzzzz clause.

Explanation: See message IWN.VAL.6506.e.

User response: See message IWN.VAL.6506.e.

IWN.VAL.6506.e The xxxxx SQL I/O statement allows

only one yyyyy clause.

Explanation: There are several situations in which this

message can occur:

v In VisualAge Generator, SQL keywords are permitted

as column names. In EGL, certain SQL keywords are

not permitted.

v In VisualAge Generator, certain SQL clauses do not

have to be parenthesized. In EGL, these clauses must

be parenthesized. For example, a subselect and its

related FROM, WHERE, GROUP BY, and ORDER BY

clauses must be enclosed in parentheses.

User response: If you are not using subselects, see

“SQL reserved words requiring special treatment” on

page 225 for the list of SQL keywords and techniques

you can use to resolve the problem with the column

names.

 If you are using subselects, add parentheses around the

subselect and its related FROM, WHERE, GROUP BY,

and ORDER BY clauses. Consider the following SQL

statement, for example:

 with #sql{

 SELECT EMPNO, COUNT(*) WORKDEPT

 FROM EMPLOYEE T1

 WHERE WORKDEPT LIKE ’%E%’

 GROUP BY WORKDEPT

 UNION ALL

 SELECT EMPNO

 FROM EMP_ACT

 WHERE PROJNO IN(’MA2100’, ’MA2112’)

 }

Appendix E. IWN.xxx messages in the Problems view 395

Change the SQL statement to add parentheses around

the second SELECT, as follows:

 with #sql{

 SELECT EMPNO, COUNT(*) WORKDEPT

 FROM EMPLOYEE T1

 WHERE WORKDEPT LIKE ’%E%’

 GROUP BY WORKDEPT

 UNION ALL

 (SELECT EMPNO

 FROM EMP_ACT

 WHERE PROJNO IN(’MA2100’, ’MA2112’))

 }

IWN.VAL.6507.e The xxxxx SQL I/O statement does

not allow the yyyyy clause.

Explanation: See message IWN.VAL.6506.e.

User response: See message IWN.VAL.6506.e.

IWN.VAL.6541.e programName - The passing record

identifier operandName must be a record

variable.

Explanation: In general, this error occurs when there

is a field in the I/O object for the function that has the

same name as another record in the program. In

VisualAge Generator, the name resolution is context

sensitive so that operandName resolves to the record for

an XFER or DXFR statement. In EGL, the fields in the

I/O object have a higher precedence than records used

elsewhere in the program. In addition, the show

statement (VAGen XFER with map or UI record) is an

I/O statement in EGL.

 Note that the VAGen statements migrate as follows:

v XFER without a map or a UI record migrates to an

EGL transfer to transaction statement.

v XFER with map and XFER with a UI record migrate

to an EGL show statement.

v DXFR migrates to an EGL transfer to program

statement.

User response: If the problem is caused by name

resolution, specify the EGL keyword this as the

qualifier (for example, this.operandName) so that the

name resolves to the record. See the User response for

message IWN.VAL.6621.w for information about how

to confirm that name resolution is the problem and

how to determine the possible qualifiers.

IWN.VAL.6570.w programName - The item access

fieldName resolved to a record, form, or

dataTable. There is an item called

fieldName in record, form, or dataTable

containerName.

Explanation: In general, this warning occurs when

there is a field (fieldName) in a record, form, or

dataTable (containerName) with the same name as

another record, form, or dataTable. The warning also

occurs when there is a field in the function’s parameter

list or function’s local storage with the same name as a

field in another record, form, or dataTable. In

VisualAge Generator, the name resolution is context

sensitive so that the name resolves to a field, record,

map, or table, depending on the statement. In EGL, the

name resolves to a function parameter item, function

local storage item, record, form, or dataTable, which is

valid, but not necessarily the same resolution as in

VisualAge Generator.

User response: The meaning varies based on the

context as listed below.

v If the message is issued for a call statement or

function invocation and fieldName is the name of a

variable in the function parameter list or function

local storage, you can ignore the warning message

because both VAGen and EGL resolve first to the

function parameter or function local storage.

Alternatively, if you want to eliminate the warning

message, consider changing the name of the variable

in the function parameter list or function local

storage. Do not change the record or item type

definition. This technique limits the change to just

the function in which the error is occurring. Be sure

to change all references to the variable within the

function.

v See the User response for message IWN.VAL.6621.w

for information about how to confirm that name

resolution is the problem and how to determine the

possible qualifiers.

IWN.VAL.6571.w programName - The item access

fieldName resolved to an item in record,

form, or dataTable containerName. There

is a record, form, or dataTable called

fieldName that is known to the program.

Explanation: In general, this warning occurs when

there is a field (fieldName) in the I/O object

(containerName) with the same name as another record,

form, or dataTable in the program. In VisualAge

Generator, the name resolution is context sensitive so

that the name resolves to the field, record, map, or

table, depending on the statement. In EGL, the name

resolves to the field in the I/O object, which is valid,

but not necessarily the same resolution as in VisualAge

Generator.

User response: The meaning varies based on the

context. Be sure to consider name resolution differences

first, before considering other possibilities. See the User

response for message IWN.VAL.6621.w for information

about how to confirm that name resolution is the

problem and how to determine the possible qualifiers.

IWN.VAL.6583.e programName - The subscript

subscriptName in array reference

arrayName[subscriptName] must be an

integer item or integer literal.

Explanation: In general, this error occurs when there

396 Rational Software Development Platform: VisualAge Generator to EGL Migration Guide

is a field in a record, form, or dataTable with the same

name as another record, form, or dataTable. In

VisualAge Generator, the name resolution is context

sensitive so that the name resolves to the field for the

subscript. In EGL, the name resolves to a record, form,

or dataTable, but these are not permitted as a subscript.

User response: If the problem is caused by name

resolution, qualify subscriptName with the name of the

record, form, or dataTable that contains the field (for

example, containerName.fieldName). See the User

response for message IWN.VAL.6621.w for information

about how to confirm that name resolution is the

problem and how to determine the possible qualifiers.

IWN.VAL.6619.e programName - variableName cannot

be resolved.

Explanation: The variableName might be a record

name, form name, or a field in a record, form or

dataTable. The meaning for migrated VAGen code

varies based on the context as described under User

response.

User response: The meaning varies based on the

context as follows:

v Determine if the VAGen program permits implicit

item definitions and variableName is an unqualified

field name. If so, validate the program in VisualAge

Generator. The VAGen validation messages provide

the definition of the implicit items used in the

program. Edit the EGL program to add variable

definitions for the implicit items using the VAGen

validation messages as a guide to the necessary

primitive type definition.

v Determine if the program uses DL/I and the

specified variableName is the name of a DL/I segment

specified in the program’s PSBRecord. If the message

points to a DL/I I/O statement such as an add or

get, the DL/I segment record is required to build the

default SSA for a lower level segment. Review the

program logic to determine whether the DL/I

segment record is required to build a default SSA. If

so, edit the program and add a declaration for the

specified record.

v Determine if the program uses DL/I and the

specified variableName is dliVar.name. VisualAge

Generator permits the use of EZE DL/I status words

(EZEDL* words) even if the program does not

specify a PSB. EGL only permits the use of the

variables in dliVar if the program declares a PSB.

Edit the program to add a declaration for the PSB or

to remove the use of the variables in the dliVar

library.

v If you did not migrate all the parts in your migration

set, the migration tool cannot include the appropriate

import statements. If the part exists in the

workspace, you might need to add an import

statement to the file containing the error.

v If variableName is a qualified name (for example,

X.Z), the qualifier (X) is ambiguous. In VisualAge

Generator, the only permitted qualifier is a record,

table, or map name because a field name can only

occur once within a record, table, or map. In EGL, a

qualifier can also be a field within a record or

dataTable because the same field name is permitted

in multiple substructures within a record or

dataTable. Determine if the program has a record,

dataTable, or form name that is the same as a field

within one of the records or dataTables. For example,

you might have a form named X that contains a field

named Z and a record named Y that contains a field

named X, where field X has a subfield named A. In

VAGen X.Z is a valid reference because X can only

mean form X. In EGL, X.Z is ambiguous because X

can be either form X or the field X within record Y. X

is ambiguous and until X is resolved X.Z cannot be

resolved even if Z only occurs within the form

named X. Try using the EGL keyword this as a

qualifier (for example, this.X.Z). Alternatively, either

change the name of the form or change the name of

the field (X) within the record (Y). A similar situation

occurs if a dataTable has the same name as a field

within a record.

v If variableName is not qualified, see message

IWN.VAL.6621.w for additional possibilities.

IWN.VAL.6620.e programName - The variable access

xxxxx is ambiguous.

Explanation: The variableName might be a field in a

record, form or dataTable. The meaning for migrated

VAGen code varies based on the context as described

under User response.

User response: The meaning varies based on the

context as follows:

v If variableName is an unqualified item name,

determine if the problem occurs for a call statement

or system function invocation. VisualAge Generator

gives precedence to Level 77 items in the program’s

primary working storage record if an unqualified

item name is used for a CALL statement or EZE

function invocation. EGL does not provide the same

precedence. If the field specified by variableName

exists in the Level 77 record that corresponds to the

EGL program’s inputRecord property, change the call

statement or system function invocation to qualify

the item with the Level 77 record name. However,

you must be sure that all programs that invoke this

function use the same Level 77 record.

v Check the function that has the error to determine if

there is an EGL show statement (VAGen XFER with

a map or XFER with a UI record). The VAGen XFER

with map and XFER with UI Record statements are

not considered to be I/O statements. The EGL show

statement is an I/O statement. The presence of an

EGL show statement changes the name resolution

rules for all the statements in the function and can

result in causing the name resolution to be

ambiguous. Consider the following situations:

Appendix E. IWN.xxx messages in the Problems view 397

– A field in the original I/O object for the function

is named the same as a field in the form or

VGUIRecord used in the EGL show statement. In

VAGen, the name resolves to the field in the

original I/O object. In EGL, both the field in the

original I/O object and the field I/O object for the

show statement are now in the same category for

name resolution. If the name should resolve to a

field in the original I/O object, then qualify the

field name with the name of the original I/O

object (for example, recordName.xxxxx).

– A field in the original I/O object for the function

is named the same as the form or the VGUIRecord

used in the EGL show statement. In VAGen, the

name resolves to the field in the original I/O

object. In EGL, the field name and the form or

VGUIRecord used in the show statement are in

the same category for name resolution so the

name is ambiguous. If the name should resolve to

a field in the original I/O object, then qualify the

field name with the name of the original I/O

object (for example, recordName.xxxxx).

IWN.VAL.6621.w programName - The operand

operandName1 resolved to a form, record,

or dataTable, and the operand

operandName2 resolved to a primitive

item. In VAGen, both operands might

have resolved to an item.

Explanation: In general, this error occurs when there

is a field in a record, form, or dataTable with the same

name as another record, form, or dataTable. In

VisualAge Generator, the name resolution is context

sensitive so that operandName1 resolves to a field. In

EGL, the name resolves to the record, form, or

dataTable. See “Reference information for messages -

name resolution and qualification rules” on page 404

for details on the differences in the resolution rules. A

variety of EGL messages can result from this difference

in name resolution, depending on the statement

context. The name resolution problem can occur due a

name conflict for either operandName1 or operandName2.

User response: Specific messages and meanings vary

depending on the statement context and whether the

field is named the same as a record, form, or dataTable.

In general, the following apply:

v Check the function that has the error to determine if

there is an EGL show statement (VAGen XFER with

a map or XFER with a UI record). The VAGen XFER

with map and XFER with UI Record statements are

not considered to be I/O statements. The EGL show

statement is an I/O statement. The presence of an

EGL show statement changes the name resolution

rules for all the statements in the function and can

result in changing the resolution in either of the

following ways:

– A record, form or table in VisualAge Generator

now resolves to a field within the I/O object for

the show statement in EGL

– A field in the original I/O object in VisualAge

Generator now resolves to the form or

VGUIRecord used in the show statement.

v Confirm that the problem is due to a field in a

record, form, or dataTable having the same name as

another record, form, or dataTable. In VisualAge

Generator, do the following:

– Generate the program to ensure that it is a valid

program.

– Use the Associates tool to find all the associates

for the program.

– Run the References tool against the Associates list.

Specify the following for the References tool:

- Set Search for to a Text search.

- Set the Text string to operandName1.

- Set the Search scope to All Parts in List.

– The results from the References tool can help you

determine whether operandName1 is the name of

an item and also the name of a record, map, or

table. The results can also help you determine the

possible qualifiers for operandName1. Repeat the

process for operandName2.

– If there are multiple possible qualifiers, review the

VAGen qualification rules in “Reference

information for messages - name resolution and

qualification rules” on page 404 to determine the

correct qualifier. If the statement in error is a call

statement or a function invocation, you might

need to check the VAGen-generated COBOL

program to determine how VisualAge Generator

resolved the name.

v Change the EGL source code as follows:

– If the name should resolve to a record or item

variable in the function’s parameter list or local

storage, consider changing the name of the

variable in the function parameter list or local

storage. Do not change the record or item type

definition. This technique limits the change to just

the function in which the error is occurring. Be

sure to change all references to the variable within

the function.

– If the name should resolve to a VAGen level 77

item, qualify the EGL field name with the name of

the record, including the level 77 suffix that you

specified during migration (for example,

recordName_level77Suffix.operandName1).

– If the name should resolve to any other field,

qualify the field name with the name of the

record, form, or dataTable that contains the field

(for example, recordName.operandName1).

– If the name should resolve to a record or form

and the statement is in a function in which the

I/O object contains a field with the same name as

the record or form, specify the EGL keyword this

as the qualifier (for example, this.operandName1).

398 Rational Software Development Platform: VisualAge Generator to EGL Migration Guide

IWN.VAL.6650.e programName - targetName is a record,

so the assignment source must be a

record, or evaluate to CHA, HEX or

MBCHAR.

Explanation: In general, this error occurs when there

is a field in a record, form, or dataTable that has the

same name as a record. In VisualAge Generator, the

name resolution is context sensitive so that targetName

resolves to the field when the source is a numeric

literal or numeric field. In EGL, the name resolves to

the record.

User response: If the problem is caused by name

resolution, qualify targetName with the name of the

record, form, or dataTable that contains the field. See

the User response for message IWN.VAL.6621.w for

information about how to confirm that name resolution

is the problem and how to determine the possible

qualifiers.

IWN.VAL.6653.e programName - targetName and

primitiveType are not compatible types in

the expression expressionText.

Explanation: In general, this error occurs when there

is a field in a record, form, or dataTable that has the

same name as another form or dataTable. In VisualAge

Generator, the name resolution is context sensitive so

that targetName resolves to the field when the source is

a primitive type or a literal. In EGL, the name resolves

to the form or dataTable.

User response: If the problem is caused by name

resolution, qualify targetName with the name of the

record, form, or dataTable that contains the field. See

the User response for message IWN.VAL.6621.w for

information about how to confirm that name resolution

is the problem and how to determine the possible

qualifiers.

IWN.VAL.6665.e programName - Invalid move source

operandName. The source must be a

record, form, item, literal, or constant.

Explanation: In general, this error occurs when there

is a field in a record, form, or dataTable that has the

same name as another dataTable. In VisualAge

Generator, the name resolution is context sensitive so

that operandName resolves to the field. In EGL, the

name resolves to the dataTable.

User response: If the problem is caused by name

resolution, qualify operandName with the name of the

record, form, or dataTable. See the User response for

message IWN.VAL.6621.w for information about how

to confirm that name resolution is the problem and

how to determine the possible qualifiers.

IWN.VAL.6676.e programName - Invalid move target

targetName[subscriptName]. The target

must be an item array of compatible

type with the source scalar.

Explanation: In general, this error occurs when there

is a field in a record, form, or dataTable that has the

same name as another record, form, or dataTable. In

VisualAge Generator, the name resolution is context

sensitive so that both the source and the target

(targetName) resolve to fields. In EGL, the source or the

target resolves to the record, form, or dataTable. A

name resolution problem can occur due to a name

conflict for either the source or the target field.

User response: If the problem is caused by name

resolution, qualify the source or the target (targetName)

with the name of the record, form, or dataTable that

contains the field. See the User response for message

IWN.VAL.6621.w for information about how to confirm

that name resolution is the problem and how to

determine the possible qualifiers.

IWN.VAL.6695.e functionName - The state XXXXX is

not allowed for this item reference.

Explanation: The meaning for migrated VAGen code

varies based on the context as described under User

response.

User response: The meaning varies based on the

context as follows:

v If state is PROTECT, SKIP, INVISIBLE, BLINK,

INITIALATTRIBUTES, or a color, the field is on a

print form. VisualAge Generator tolerates setting

these attributes for printer forms. EGL does not.

Modify the function to remove the statement.

Alternatively, if the same function is used for both a

text form and a print form, you must create a copy

of the function for use with print forms or move the

statement to the text form functions that invoke the

current function.

v If state is EMPTY, determine if a form or record was

not available during migration. EGL permits the

definition of independent data items and assumes

that if a type definition cannot be found, the

definition is for an item. EGL does not support the

use of set empty for a field in a record or form.

Define or migrate the missing record or form.

IWN.VAL.6697.e programName - The state

formFieldStateName is not allowed for a

record reference.

Explanation: In general, this error occurs when there

is a field in a form that has the same name as a record.

In VisualAge Generator, the name resolution is context

sensitive so that the name resolves to the field on the

map when the SET statement is for a property such as

CURSOR, a color, and so on. In EGL, the name resolves

to the record.

Appendix E. IWN.xxx messages in the Problems view 399

User response: If the problem is caused by name

resolution, qualify the field specified in the set

statement with the name of the form. See the User

response for message IWN.VAL.6621.w for information

about how to confirm that name resolution is the

problem and how to determine the possible qualifiers.

IWN.VAL.6704.e programName - Items in fixed

non-SQL records, records, form fields,

and SQL items with the isNullable=no

cannot be set to null.

Explanation: In general, this error occurs when there

is a field in an SQL record that has the same name as

another record, form, or dataTable. In VisualAge

Generator, the name resolution is context sensitive so

that the name in the SET x NULL statement resolves to

the field. In EGL, the name resolves to the record, form,

or dataTable.

User response: The problem might be caused by one

of the following:

v If the problem is caused by name resolution, qualify

the field name in the set statement with the name of

the SQL record. See the User response for message

IWN.VAL.6621.w for information about how to

confirm that name resolution is the problem and

how to determine the possible qualifiers.

v If you selected the VAGen migration preference Omit

isNullable property when you migrated, the migration

tool does not include the isNullable=yes property

for each field in an SQL record. Edit the SQL record

to add the isNullable=yes property for this SQL

field. Alternatively, change the function so that it no

longer checks the SQL field for null.

IWN.VAL.6716.e programName - The argument

argumentName cannot be passed to the

inOut parameter parameterName of the

function functionName. The types type1

and type2 are not reference compatible.

Explanation: functionName is the name of the invoked

function. An argument passed to an inOut parameter is

required to be reference compatible. Reference

compatible means that the argument and parameter

types must match exactly. This error can occur for

either of the following reasons:

v VisualAge Generator does not support, but in some

cases tolerates, different types for the argument and

parameter.

v There is a field in a record, form, or dataTable that

has the same name as another record, form, or

dataTable.

The meaning for migrated VAGen code varies based on

the context as described under User response.

User response: The meaning varies based on the

context as listed below.

v If functionName is a system function and EGL

resolves to a record or form, this might be a situation

in which VisualAge Generator tolerates a record or

form even when it does not make sense. For

example, VisualAge Generator tolerates passing a

record as the argument for an EZE math function

and passing a form as the argument to a string

function. Review the program logic to determine

what is intended.

v If functionName is a system function and EGL

resolves to a field, but the field is not of the correct

type. VisualAge Generator tolerates some argument

types that are not compatible with the parameter

types. EGL requires the types to be compatible. Add

a substructure (or parent field) for the argument to

provide a field that has the correct definition. For

example, if the problem occurs for the third

argument in sysLib.startTransaction and the third

argument is an int field, add a char parent field to

use as the third argument. Specifying the char field

as the parent field ensures that when the record is

initialized, the substructure int field is initialized to

binary zeroes.

v If the invoked function is a user function and EGL

resolves to a field, the field is not of the correct type.

You might be able to change the invoked function to

use a function parameter type such as number that

permits a wider variety of argument types and

lengths. Alternatively, review the invoked function

and all the places where it is invoked. You might

have to split the invoked function into multiple

functions, each with a different definition of the

parameter.

v Also consider whether there is a field with the same

name as another record, form, or dataTable. See the

User response for message IWN.VAL.6621.w for

information about how to confirm that name

resolution is the problem and how to determine the

possible qualifiers.

IWN.VAL.6731.e programName - The argument

argumentName cannot be passed to the in

or out parameter parameterName of the

function functionName. The types type1

and type2 are not assignment

compatible.

Explanation: functionName is the name of the invoked

function. An argument passed to an in or out

parameter is required to be assignment compatible.

VisualAge Generator tolerates some types that are not

assignment compatible. EGL does not permit

incompatible types. The meaning for migrated VAGen

code varies based on the context as described under

User response.

User response: See the User response for message

IWN.VAL.6716.e.

400 Rational Software Development Platform: VisualAge Generator to EGL Migration Guide

IWN.VAL.6736.e programName - The argument

argumentName in function invocation

functionName is invalid. The argument

must be a fixed record or have a

primitive type besides string, blob, or

clob.

Explanation: functionName is the name of the invoked

function. The argument must be a fixed record or a

primitive type that has a fixed length. The migration

tool converts all VAGen records to fixed records.

VisualAge Generator tolerates some types that are not

assignment compatible. EGL does not permit

incompatible types. The meaning for migrated VAGen

code varies based on the context as described under

User response.

User response: See the User response for message

IWN.VAL.6716.e.

IWN.VAL.6741.e programName - The argument

argumentName in function invocation

functionName is invalid. The argument

must be of primitive type char, mbchar,

dbchar, hex, num, or unicode.

Explanation: functionName is the name of the invoked

function. The argument is limited to the listed primitive

types. VisualAge Generator tolerates some types that

are not assignment compatible. For example, VisualAge

Generator tolerates passing records as arguments to

string functions, even though this is not valid based on

the VAGen documentation. EGL does not permit

incompatible types. The meaning for migrated VAGen

code varies based on the context as described under

User response.

User response: See the User response for message

IWN.VAL.6716.e.

IWN.VAL.6742.e programName - The argument

argumentName in function invocation

functionName is invalid. The argument

must be of primitive type char, dbchar,

unicode, hex, num, bin, int, smallint,

bigint, pacf, money, or decimal.

Explanation: functionName is the name of the invoked

function. The argument is limited to the listed primitive

types. VisualAge Generator tolerates some types that

are not assignment compatible. EGL does not permit

incompatible types. The meaning for migrated VAGen

code varies based on the context as described under

User response.

User response: See the User response for message

IWN.VAL.6716.e.

IWN.VAL.6743.e programName - The argument

argumentName cannot be passed to the

loose parameter input of the function

functionName. It must be of primitive

type char.

Explanation: functionName is the name of the invoked

function. The argument is limited to the listed primitive

types. VisualAge Generator tolerates some types that

are not assignment compatible. EGL does not permit

incompatible types. The meaning for migrated VAGen

code varies based on the context as described under

User response.

User response: See the User response for message

IWN.VAL.6716.e.

IWN.VAL.6744.e programName - The argument

argumentName cannot be passed to the

loose parameter parameterName of the

function functionName. It must have a

numeric primitive type.

Explanation: functionName is the name of the invoked

function. The argument is limited to the listed primitive

types. VisualAge Generator tolerates some types that

are not assignment compatible. For example, VisualAge

Generator tolerates passing forms and records as

arguments to math functions and to index and length

arguments of string functions. EGL does not permit

incompatible types. The meaning for migrated VAGen

code varies based on the context as described under

User response.

User response: See the User response for message

IWN.VAL.6716.e.

IWN.VAL.7553.e functionName - Argument n for

systemFunctionName must be a string

item, string constant or a string literal.

Explanation: functionName is the name of the invoked

function. The argument is limited to the listed primitive

types. VisualAge Generator tolerates some types that

are not assignment compatible. EGL does not permit

incompatible types. The meaning for migrated VAGen

code varies based on the context as described under

User response.

User response: See the User response for message

IWN.VAL.6716.e.

IWN.VAL.7740.e programName - variableName is

read-only and cannot be assigned to.

Explanation: variableName is one of the EGL system

variables such as sysVar.userID. The migration tool

always qualifies the EGL system variables with the

EGL library name. If variableName is not qualified and

is in uppercase, it might be an implicit item that is

created automatically in VisualAge Generator. EGL

does not permit implicit items.

Appendix E. IWN.xxx messages in the Problems view 401

User response: Validate the program in VisualAge

Generator to determine whether it allows implicit items

and if variableName is one of the implicit data items

created for the program. If so, modify the EGL program

to add a variable declaration for variableName. Use the

information in the VAGen validation messages to

determine the correct definition of the item in EGL.

IWN.VAL.7757.e The number of elements in the

initializer array must be no greater than

the number of occurs of item fieldName.

Explanation: For a VGUI record, the list of values for

a submit or submitBypass button array is too big for

the size of the array. VisualAge Generator ignores any

extra values during generation. EGL requires that the

array size match the number of values in the list.

User response: Edit the VGUI record and remove the

additional values.

IWN.VAL.7789.e The numElementsItem item

fieldName cannot be a multiply occurring

item.

Explanation: For UI records, VisualAge Generator

tolerates the Occurrences item as an array, but treats it

as though it was not an array. EGL does not permit the

numElementsItem property to specify a multiply

occurring item.

User response: Edit the VGUI record and change the

specified fieldName so that it not an array. You might

have to move the field outside a multiply occurring

parent field.

IWN.VAL.7868.e programName - stateName is not a

valid state for a DL/I segment record.

Explanation: For a DL/I record, the stateName in an if

or while statement is not valid. VisualAge Generator

tolerates some stateNames that do not make sense for

DL/I (for example, FMT). EGL does not permit this

stateName.

User response: Review your program logic to

determine what you really intended the program to do.

Change or comment out the statement.

402 Rational Software Development Platform: VisualAge Generator to EGL Migration Guide

IWN.XML messages

IWN.XML.3997.e XML Validation Error - Attribute

″yyyyy″ must be declared for element

type ″xxxxx″.

Explanation: In VisualAge Generator, the option yyyyy

is valid for element xxxxx. This combination is not

supported by EGL. The migration tool migrates the

value even though it is invalid so there will be an error

in the Problems view to remind you to resolve the

problem.

User response: Review the EGL online helps for the

options that are valid for xxxxx. When you decide

which option (or options) to use, you might need to

open the build descriptor file with the Text Editor to be

able to make the necessary change.

IWN.XML.3999.e (first of six alternatives) XML

Validation Error - Attribute ″xxxxx″ was

already specified for element ″yyyyy″.

Explanation: Attribute xxxxx is specified multiple

times in the same control part. The XML parser stops

processing the .eglbld file. As a result, this error can

mask other errors. Because this error ends the

processing of the .eglbld file, there might be errors for

unresolved parts that are in the .eglbld file, but which

are defined after the point of the error.

User response: Edit the current .eglbld file using the

Text Editor so that there is only one specification for

xxxxx in the control part. When you save the .eglbld

file, the messages in the Problems view should be

updated. Because the XML parser stops processing at

the first duplicate attribute in the .eglbld file, you

might have to resolve several errors before the entire

file can be parsed.

IWN.XML.3999.e (second of six alternatives) XML

Validation Error - The content of

element type ″xxxxx″ must match

″(listOfValues)″.

Explanation: In VisualAge Generator, one or more of

the values specified for a resource association is a valid

value. This value is not supported by EGL. The

migration tool migrates the value even though it is

invalid so there will be an error in the Problems view

to remind you to resolve the problem.

User response: Review the EGL online helps for the

options that are valid for xxxxx. When you decide

which option to use, you might need to open the build

descriptor file with the Text Editor to be able to make

the necessary change.

IWN.XML.3999.e (third of six alternatives) XML

Validation Error - Attribute xxxxx with

value yyyyy must have a value from the

list zzzzz.

Explanation: Not all VAGen values have a

corresponding replacement in EGL.

User response: For details on how migration converts

the values, refer to the tables for linkage table and

resource association in “Control parts” on page 316. For

information on the choices available in EGL, refer to

the EGL documentation.

IWN.XML.3999.e (fourth of six alternatives) XML

Validation Error - Attribute xxxxx must

be declared for element type ″yyyyy″

Explanation: Not all VAGen values have a

corresponding replacement in EGL. In some cases,

combinations of values that are valid in VisualAge

Generator are not valid in EGL. For example:

v In a linkage table part, the library attribute is not

valid for a localCall entry. In EGL, calls from

generated Java code to a native C++ DLL are

considered to be remote calls even when running on

the same machine.

v In a linkage table part, the remotePgmType attribute

is not valid for a localCall entry. In VAGen, the

remoteAppType option is ignored for local calls. In

EGL, XML validation is more restrictive—only

attributes that are meaningful are permitted.

User response: For details on how migration converts

the values, refer to the tables for linkage table and

resource association in “Control parts” on page 316. For

information on the choices available in EGL, refer to

the EGL documentation.

IWN.XML.3999.e (fifth of six alternatives) XML

Validation Error - Element type ″xxx″

must be followed by either attribute

specifications, ″>″ or ″/>″. - in file

Explanation: In a resource association part, the target

environment information is invalid. This can occur

when the original VAGen resource association entry

contains /system=xxx*yyy or /system=xxx*. The

wildcard * is valid in VAGen, but not in EGL. The

migration tool does not attempt to convert the entry to

all possible EGL target systems that might be valid.

User response: Change the entry to be a valid EGL

runtime environment. Repeat the entry as many times

as necessary for all of your EGL runtime environments

that apply. For example, if the original VAGen entry is

/system=mvs*, repeat the entry for the EGL

environments zosbatch and zoscics. Because the XML

parser stops processing at the first resource association

Appendix E. IWN.xxx messages in the Problems view 403

entry that contains an * in the target environment, you

might have to resolve several errors before the entire

file can be parsed.

IWN.XML.3999.e (sixth of six alternatives) XML

Validation Error - The content of

elements must consist of well-formed

character data or markup. - in file

Explanation: In a resource association part, the target

environment information is invalid. This can occur

when the original VAGen resource association entry

contains /system=*xxx or /system=*. The wildcard * is

valid in VAGen, but not in EGL. The migration tool

does not attempt to convert the entry to all possible

EGL target systems that might be valid.

User response: Change the entry to be a valid EGL

runtime environment. Repeat the entry as many times

as necessary for all of your EGL runtime environments

that apply. For example, if the original VAGen entry is

*cics, the only valid EGL runtime environment is

zoscics. Because the XML parser stops processing at the

first resource association entry that contains an * in the

target environment, you might have to resolve several

errors before the entire file can be parsed.

Java messages for JSPs

Invalid character constant

Explanation: This can occur in the following

situations:

v For the xxxxxBean.java generated for a VGUI record,

the setFillCharacter method uses a value of ’nullFill’.

In VisualAge Generator, a shared data item has two

sets of properties -- one for maps and one for UI

records. In EGL, a dataItem part has one set of

properties. The migration tool merges the two sets of

properties, giving precedence to the UI properties.

However, the migration tool cannot predict whether

the data item part is used in a map, a UI record, or

both. The data item did not specify a UI default fill

character so the migration tool used the map default

character, which was null. When the shared data

item was used in a UI record, VisualAge Generator

used blank as the default fill character because no UI

fill character was specified. When the data item part

is used as a type definition in a VGUI record, EGL

generates using the null fill character, which is not

valid.

User response: If the problem is due to the

setFillCharacter method with a value of ″nullFill″, edit

the VGUI record and add an override property for the

item to set fillCharacter=″ ″. This preserves nullFill as

the default fillCharacter for use on EGL forms.

Reference information for messages - name resolution and

qualification rules

The VisualAge Generator and EGL name resolution and qualification rules differ

due to enhancements in the EGL. In most cases, the differences in the VAGen and

EGL name qualification and name resolution rules do not pose a problem.

However, in the case where a field in a record, form, or dataTable has the same

name as another record, form, or dataTable, VisualAge Generator and EGL might

resolve the names differently. The following sections review the rules for the two

products and then describe the validation messages that might appear in the

Problems view when this situation occurs.

VisualAge Generator name resolution and qualification rules

VisualAge Generator does not permit two parts to have the same name. However,

any of the following might have the same name as a record, map, or table:

v A nonshared item in a record or table

v A field on a map (which is always treated as a nonshared item)

v A nonshared field in a function’s local storage or function’s parameter list

In addition, multiple items might have the same name as follows:

v Function local storage or function parameter

v Level 77 item in the program’s primary working storage record

v Item in the program’s called parameter list

v Item in an I/O object for a function

v Item in any other record, map, or table for the program

404 Rational Software Development Platform: VisualAge Generator to EGL Migration Guide

In the situations in which the same name is defined in multiple places within a

program, the VisualAge Generator name resolution is context sensitive and

depends on the statement type as follows:

v An item is used in statements such as the following:

– An assignment statement or a MOVE statement in which one of the following

occurs:

- The source is a literal, another item, or, in the case of an assignment

statement, an arithmetic expression.

- The target is another item.
– A subscript in any statement.

– The source, target, or for count in a MOVEA statement.

– An IF, WHILE, or TEST statement in which the right-hand side of the

comparison can only be used with an item (such as BLANKS, NUMERIC,

NULLS, TRUNC) or in which the other side of the comparison is a literal or

another item.

– A SET statement in which the value being set can only be used with an item

(such as NULL or CURSOR).

– A FIND or RETR statement.

– If the item name is not qualified and there are multiple items with the same

name, VisualAge Generator resolves the name based on categories VG1

through VG3 as described below.
v A record is used in statements such as the following:

– A MOVE statement in which the source or target is another record or map.

– An IF, WHILE, or TEST statement in which the right-hand side of the

comparison can only be used with a record (such as DUP or ERR).

– A SET statement in which the value being set can only be used with a record

(such as EMPTY or SCAN).

– A DXFR statement

– An XFER or XFER with UI record statement.
v A map is used in statements such as the following:

– A MOVE statement in which the source or target is another record or map.

– A SET statement in which the value being set can only be used with a map

(such as EMPTY, CLEAR, or PAGE).

– An XFER with map statement.
v In cases in which the statement context does not determine the part type that is

expected, the precedence varies based on the statement, whether the statement is

in an I/O function, and whether an item and a record, map, or table have the

same name. For example:

– For a CALL statement or a system function invocation in which the argument

names are all unique, there is no problem. In the case where a field has the

same name as another record, map, or table, the observed VAGen name

resolution varies based on the use of level 77 items, called parameters, records

in the tables and additional records list, the use of records or forms as I/O

objects, and so on.

Note: Based on tests using VisualAge Generator 4.5 Fix Pack 5, no consistent

pattern was determined for CALL statements or function invocations.

In the event of a name resolution conflict for a CALL statement or

Appendix E. IWN.xxx messages in the Problems view 405

system function invocation, generating the COBOL program might be

the quickest method of determining how VisualAge Generator resolved

the name.

– For the statement IF x IS MODIFIED, x might be a map or a field on another

map. In this case, the map is used. To reference the field in the other map,

you must qualify the name as mapName.x. Similarly, if x is a UI record or a

field in another UI record, the UI record is used. To reference the field in the

other UI record, you must qualify the name as UIRecord.x.

When VisualAge Generator expects to find an item, the following name

qualification rules are used to determine where the item is located.

v If the item name is qualified, the qualifier can be a record, map, or table.

Multiple levels of qualification are not necessary (and are not supported)

because an item name must be unique within a record, map, or table.

v If an item name is not qualified, the priority in which data items are checked to

determine the qualifier is as follows:

– Category VG1 - Item names in the local storage and parameter list for this

function.

– Category VG2 - Records and maps that are specific to this function as follows:

- I/O object and its items.

- Records in the function parameter list and their items.

- Records in the function local storage list and their items.

- If the name is not unique in this category, it must be qualified.
– Category VG3 - Records, maps, and tables in the program as follows:

- Program working storage and its items.

- Table and Additional Records list and their items.

- Records and maps in the called parameter list and their items.

- I/O objects of other functions in the program and their items.

- If the name is not unique in this category, it must be qualified.
– If the program allows implicit data items, VisualAge Generator creates an

implicit definition based on usage.

For a CALL statement or function invocation, records tend to take precedence over

fields (because a record name cannot be qualified) and level 77 items tend to take

precedence over other fields (because long ago, only level 77 items could be used

in a CALL statement). However, based on tests using VisualAge Generator 4.5 Fix

Pack 5, no consistent pattern was determined for CALL statements or function

invocations.

EGL name resolution and qualification rules

In EGL, the name resolution rules differ from the VisualAge Generator rules due to

the following EGL enhancements:

v The same field name can be included multiple times in a record under different

substructures. Multiple levels of qualification are supported and in some cases

are required. The qualifier can be a field within the record (for example,

MYRECORD.SHIPPING.ADDRESS or just SHIPPING.ADDRESS).

v A function can have multiple I/O statements and therefore, multiple I/O objects.

v The show statement (VAGen XFER with map or UI record) is considered to be

an I/O statement.

v Fields (item variables) can be declared at the program level.

406 Rational Software Development Platform: VisualAge Generator to EGL Migration Guide

v EGL does not have level 77 items. The migration tool includes the level 77 items

in a separate basic record that is declared in the program.

v New EGL parts such as libraries.

v The EGL keyword this, which can be used to indicate that you want to use a

record variable declared at the program level or a form specified in the

program’s use forms statement rather than a name in Categories EGL1 and

EGL2 as described below.

When EGL finds a name, the following name resolution and qualification rules are

used to determine where the field is located.

v If the program does not set the allowUnqualifiedItemReferences property to

yes, all field references must be qualified. If the field is in a substructure, the

field must be fully qualified. For example, if allowUnqualifiedItemReferences is

not set to yes and CUSTOMER_RECORD contains the field NAME which is the

parent of LASTNAME, then CUSTOMER_RECORD.NAME.LASTNAME is valid,

but CUSTOMER_RECORD.LASTNAME is not valid.

v The qualifier can be a record, form, dataTable, or another field within a fixed

record or dataTable. Multiple levels of qualification are permitted and in some

cases are required.

v If a field is not qualified or is partially qualified, the priority in which fields are

checked to determine the qualifier is as follows:

– Category EGL1 - Variables declared at the function level as follows:

- Item variable names declared in the local storage and parameter list for this

function.

- Record variable names declared in the local storage and parameter list for

this function.

- Names must be unique in this category.
– Category EGL2 - The I/O objects and other fields that are specific to this

function as follows:

- I/O objects and their fields. In EGL, a function can have multiple I/O

statements. In addition, in EGL the show statement (VAGen XFER with

map or XFER with UI record) is considered to be an I/O statement.

- The fields in record variables in the function parameter list.

- The fields in record variables in the function local storage list.

- If the name is not unique in this category, it must be qualified.
– Category EGL3 - Variables declared at the program level as follows:

- Record variable names from the program’s record declarations. The record

declarations list includes records specified by the inputRecord property or

used in I/O statements in any function of the program.

- Item variable names declared at the program level.

- Item variable and record variable names listed in the program’s parameter

list.

- If the name is not unique in this category, it must be qualified.
– Category EGL4 - A form name from the program’s use forms statement. This

list includes forms specified by the inputForm property, program’s parameter

list, or used in I/O statements in any function of the program. If the use form

statement only specifies a formGroup, then all forms within the formGroup

are considered.

– Category EGL5 - A dataTable name that is specified in the program’s use

declarations.

Appendix E. IWN.xxx messages in the Problems view 407

– Category EGL6 - Fields used anywhere in the program as follows:

- Fields from record variables, forms, and dataTables in categories EGL3

through EGL5.

- If the use form statement only specifies a formGroup, then all fields on all

forms within the formGroup are considered.

- If the name is not unique in this category, it must be qualified
– Category EGL7 - fields in a user library specified the program’s use

declarations. (This category does not affect migrated VAGen programs

because nothing migrates to an EGL library.)

– Category EGL8 - fields in a system library. (The migration tool always

qualifies fields migrated from the VAGen EZE words with the EGL system

library name.)

– Implicit definitions are not permitted in EGL.

The EGL name resolution and qualification rules are consistent -- they are not

affected by the type of statement or function being invoked.

Validation messages due to differences in name resolution

and qualification rules

In most cases, the differences in the VisualAge Generator and EGL name resolution

and qualification rules do not pose a problem. However, in the case where a field

in a record, form, or dataTable has the same name as another record, form, or

dataTable, VisualAge Generator and EGL might resolve the names differently. This

can result in the following:

v Invalid EGL statements which are detected by normal EGL validation (for

example, trying to set the color for a record rather than a field on a form). In

these cases, there will be a validation error message in the Problems view.

v Special EGL warning messages that are produced by validation if you are using

VisualAge Generator Compatibility mode. These warning messages indicate

that the name resolution might be different between VisualAge Generator and

EGL.

v No EGL message is issued for situations in which there is a level 77 item or

called parameter which received precedence for a CALL statement or function

invocation in VisualAge Generator and which results in a different resolution in

EGL.

The following are examples of situations in which name resolution might change

between VAGen and EGL if there are things that have the same name.

Example 1

Resolution changes from field in one record to another record:

ProgramA:

 Tables and Additional Records List

 RECORDA - a record that contains field RECORDZ defined as CHAR

 RECORDZ - a record that contains other fields

 FunctionA:

 MOVE "abc" to RECORDZ;

 /* VAGen-resolves to field RECORDA.RECORDZ, */

 /* based on statement context; */

 /* record is invalid if source is a literal */

 /* EGL -resolves to record RECORDZ, */

 /* based on Category EGL3; a record is valid */

 /* -message IWN.VAL.6621.w is issued */

408 Rational Software Development Platform: VisualAge Generator to EGL Migration Guide

Example 2

Resolution changes from a field in the original I/O object to being ambiguous due

to the name of a form used in show statement:

ProgramB:

 FORMF is a form in the program’s formGroup

 FunctionB:

 INQUIRY RECORDB /* RECORDB contains field FORMF defined as BIN */

 XFER PGMBX , FORMF;/* converts to EGL show statement */

 FORMF = 123; /* VAGen-resolves to field RECORDB.FORMF */

 /* based on statement context; */

 /* form is invalid if source is a literal */

 /* EGL -cannot resolve between field or form FORMF;*/

 /* based on Category EGL2; form is not valid */

 /* -FORMF is now an I/O object for show */

 /* -a form is invalid; */

 /* -message IWN.VAL.6620.e is issued */

Example 3

Resolution changes from a record to a field in a form used in show statement

ProgramC:

 FORMF is a form in the program’s formGroup and contains field RECORDZ

 Tables and Additional Records List

 RECORDZ - a record that contains some fields

 FunctionC:

 XFER PGMCY , FORMF;/* converts to EGL show statement */

 CALL PGMCX RECORDZ;/* VAGen-resolves to record RECORDZ */

 /* based on statement context; */

 /* record receives precedence on a CALL */

 /* EGL -resolves to field FORMF.RECORDZ; */

 /* based on Category EGL2 */

 /* -FORMF is now an I/O object for show */

 /* -message IWN.VAL.6571.w is issued */

Example 4

Resolution changes from a field in the original I/O object to being ambiguous due

to a field in a form used in show statement.

ProgramD:

 FORMF is a form in the program’s formGroup and

 contains a field named ITEMD defined as BIN

 FunctionD:

 INQUIRY RECORDD /* RECORDD contains field ITEMD defined as BIN */

 XFER PGMDX , FORMF;/* converts to EGL show statement */

 ITEMD = 123; /* VAGen-resolves to field RECORDD.ITEMD */

 /* based on Category VG2 */

 /* - RECORDD is I/O object */

 /* - FORMF is not an I/O object */

 /* EGL -cannot resolve between 2 fields ITEMD */

 /* based on Category EGL2 */

 /* -FORMF is now an I/O object for show */

 /* -message IWN.VAL.6620.e is issued */

Appendix E. IWN.xxx messages in the Problems view 409

410 Rational Software Development Platform: VisualAge Generator to EGL Migration Guide

Appendix F. Situations where incorrect External Source

Format causes problems in creation of EGL

There are some situations in which the External Source Format produced after

running the Stage 1 migration tool will cause problems when running the

migration tool that produces EGL. Those situations, which are very rare and

unlikely, are discussed here.

v Data item part

– The map range edit (minimum and maximum values) can cause an exception

in Stage 2 due to invalid External Source Format. The problem occurs if

External Source Format is imported into VisualAge Generator and the data

item is never modified. When the External Source Format is exported in Stage

1 of the migration, the map range edit is in an invalid format. Modify the

data item in VisualAge Generator and save the item. For example, add and

remove a blank from the item description. Alternatively, before you run Stage

1 of migration, install the fix for VisualAge Generator APAR PQ75621 or

APAR PQ79914. This APAR is included in VAGen V4.5 FixPack 5.

– For VisualAge Generator on Java, data items with similar part names can

cause unpredictable results when the # symbol is used in one of the names.

For example, DATAITEM#A, DATAITEM@A, and DATAITEM$A can result in

the wrong External Source Format code being stored in the migration

database for DATAITEM#A. If you have used the # symbol in data item

names, review the resulting EGL source code to ensure that the correct

information was migrated. Alternatively, before you run Stage 1 on Java,

install the fix for VisualAge Generator APAR PQ85794. This APAR is included

in VAGen V4.5 FixPack 5.
v Record part

– For SQL records, the default key item can cause a problem where there is an

invalid (or unprintable) character in the field. If you receive a message during

Stage 2 indicating ″NoSuchElementException″, modify the record in

VisualAge Generator, swipe through the default key item field and delete the

unprintable character. Save the record and run Stage 1 again. Alternatively,

before you run Stage 1 of migration, install the fix for VisualAge Generator

APAR PQ89390. This APAR is included in VAGen V4.5 FixPack 5.
v Program part

– For VisualAge Generator on Smalltalk, when you list the associates for a

program, the message table does not appear in the associates list. When the

message table is not included in the associates list, the Stage 3 migration tool

does include the project containing the message table in EGL Build Path.

Similarly, the Stage 3 migration tool does not include an import statement for

the package containing the message table. After Stage 3, if there is a message

on the Problems view about a program not being able to resolve a dataTable

part, check the EGL Build Path and the import statements. Alternatively,

before you run Stage 1 on Smalltalk, install the fix for VisualAge Generator

APAR PK19541. This APAR is not included in VisualAge Generator Version

4.5 Fix Pack 5.

© Copyright IBM Corp. 2004, 2006 411

412 Rational Software Development Platform: VisualAge Generator to EGL Migration Guide

Appendix G. Migration Database

Creating the DB2 migration database

Except where noted, the following instructions apply regardless of whether you are

migrating from Java or Smalltalk. Even if you are migrating from Smalltalk, you

must set the JDBC driver level on the machine where you plan to run Stage 2 and

3 of migration.

Setting the JDBC level for DB2 7.2

Note: The migration tool requires DB2 7.2 with Fix Pack 14 or higher.

The migration tool requires that db2java.zip be at the JDBC 2.0 level. DB2 7.2 ships

with two db2java.zip files -- one at the JDBC 1.1 level and one at the JDBC 2.0

level. To configure DB2 7.2 for JDBC 2.0, do the following:

1. Stop all DB2 processes.

a. Navigate to the Control Panel and then select Administrative Tools ->

Services.

b. You might have to stop the DB2 - DB2 process last if it does not stop on

your first attempt.
2. Open a DOS command prompt window and navigate to the directory that

contains the usejdbc2.bat file. If you used the default install directory when you

installed DB2 7.2, the file should be in the \SQLLIB\java12 directory.

3. Run the usejdbc2.bat file.

4. Start everything you stopped in the first step.

Setting the JDBC level for DB2 8.1 or higher

If you have DB2 8.1 or higher installed, the db2java.zip file is already at the correct

level.

Using DB2 on Windows XP

The migration tool requires the following:

v The user ID that is used to access the migration database must not contain any

blanks.

v The Windows user ID needs to have administrator authority, not limited

authority, for the migration sets to be visible in the migration tool wizards in

Stages 2 and 3.

Creating the migration database

To create the migration database, do the following:

1. Make sure that DB2 and any other applications that use it are shut down. For

example, shut down VisualAge Generator and the EGL development

environment.

2. Open a DB2 Command Window.

v If you are migrating from Java, navigate to the VisualAgeJava-installation-
directory\ide\vgmigration directory.

© Copyright IBM Corp. 2004, 2006 413

v If you are migrating from Smalltalk, navigate to the VisualAge-Smalltalk-
installation-directory.

3. Run the file named SetupDatabase.bat. This runs a file in the same directory

called createdatabase.sql and saves the output to a file called createdatabase.out

in the same directory. This creates a DB2 database called VGMIG, connects to

the database, and configures the database parameters. It might take up to a

minute to create the database. Be sure to wait until all the commands finish

executing.

Note:

v The first command that appears in the console might result in an error

message. You can ignore this message. It simply means that the

VGMIG database did not already exist.

v If you want to create a database with a name other than VGMIG, you

must change all occurrences of VGMIG in createdatabase.sql to your

desired database name. You must also remember to change VGMIG in

your Stage 1 – 3 migration tool preferences.

v By default the VGMIG database is not password protected. If you

need password protection, you must change the database to be

password protected.
4. Run the file named SetupTables.bat. This runs a file in the same directory called

createtables.sql and saves the output to a file called createtables.out in the same

directory. This creates all the tables and views that the migration tool needs in

the migration database. The tables are crated with a high-level qualifier (a

schema) called MIGSCHEMA. It might take up to a minute to create the

database. Be sure to wait until all the commands finish executing.

Note:

v The first commands that appear in the console might result in error

messages. You can ignore these messages. They simply mean that the

tables and views did not already exist.

v If you want to create a schema with a name other than MIGSCHEMA,

you must change all occurrences of MIGSCHEMA in createtables.sql to

your desired schema name. You must all remember to change

MIGSCHEMA in your Stage 1 – 3 migration preferences.

v If you ever need to completely clean out the migration database, you

can rerun the SetupTables.bat file from a DB2 Command Window.
5. Close the DB2 Command Window.

At this point the migration database, schema, tables, and views have been created.

You are now ready to create a preferences file for the Stage 1 migration tool to use.

If you are migrating from Java, see “Setting Stage 1 preferences” on page 116. If

you are migrating from Smalltalk, see “Setting Stage 1 preferences” on page 136.

Resetting the migration database

If you need to reset the migration database (for example, due to changing your

renaming rules), use one of the following techniques:

v Use the tool that deletes and recreates all the tables in the migration database.

Use this tool in the following situations:

– If you need to delete all your migration plans.

– If you have migrated multiple versions of a Java project.

414 Rational Software Development Platform: VisualAge Generator to EGL Migration Guide

– If you have migrated multiple versions of a Smalltalk configuration map.

To run the tool that deletes and recreates all the tables, do the following:

1. From a DB2 Command Window, navigate to the directory where

SetupTables.bat is located.

– For Java, this is your VisualAge-for-Java-install-directory\ide\vgmigration.

– For Smalltalk, this is your VisualAge-Smalltalk-install-directory.
2. Run SetupTables.bat.

v Use the tool that deletes a specified migration set. Use this tool if you need to

delete only a few migration sets. To run the tool that deletes a specified

migration set, do the following:

1. Determine the migration set ID that you need to delete from the migration

database as follows:

a. Using the DB2 Control Center or an SQL query, look at the

CONFIGPLAN table.

b. Find the CONFIGPLANNAME that you want to delete.

c. The migration set ID you need to specify is the value in the

corresponding CONFIGPLANID column.
2. From a DB2 Command Window, navigate to the directory where

deletemigsets.bat is located.

– For Java, this is your VisualAge-for-Java-install-directory\ide\vgmigration.

– For Smalltalk, this is your VisualAge-Smalltalk-install-directory.
3. Run the deletemigsets.bat file, using one of the following formats:

– If you want to delete just one migration set, use the following format:

deletemigsets n

where n is the value in the CONFIGPLANID column corresponding to the

migration set ID that you want to delete.

– If you want to delete several migration sets, use the following format:

deletemigsets "n1,n2"

where n1 and n2 are the migration set IDs that you want to delete.

Cataloging a remote database using DB2

The migration tool provides better performance if you use a local DB2 database.

However, if you decide to use a remote database, this section provides information

that can be helpful. You need the following information to catalog a remote

database on DB2:

v Hostname or IP address of the remote machine where the database resides

v Port number and protocol on the client (for example: 60000/tcp)

v Node name (alias that describes the remote machine (for example: db2node)

v Database name

v Database alias (optional)

To establish a TCP/IP connection to a remote database using DB2, do the

following:

1. Bring up a Command Prompt window on Windows .

2. To catalog the node, enter the following command all on one line:

db2 catalog tcpip node nodeName remote [hostName | ipAddress]

 server [svcename | portNumber]

Appendix G. Migration Database 415

You can enter either the hostName or the ipAddress. For example, to catalog a

remote server on node db2node with the IP address 9.10.11.123 using port

number 60000, enter the following command:

db2 catalog tcpip node db2node remote 9.10.11.123 server 60000

3. To catalog the database, enter the following command all on one line:

db2 catalog database databaseName

 [as databaseAlias] at node nodeName

The ″as databaseAlias″ is optional. If you do not specify databaseAlias, the alias

will be the same as the database name. The nodeName must be the same

nodeName you used in step 2.

For example, to catalog a remote database called SAMPLE so that it has the

alias sam1 on node db2node, enter the following command:

db2 catalog database sample as sam1 at node db2node

4. To test the connection to the database, enter the following command all on one

line:

db2 connect to databaseAlias use userName using password

If you did not specify an alias (databaseAlias) in step 3, use the database name.

For example, to connect to database SAMPLE with the alias sam1 for user

db2user who has a password db2password, enter the following command:

db2 connect to sam1 user db2user using db2password

If you did not specify sam1 as the database alias in step 2, then enter the

following command:

db2 connect to SAMPLE user db2user using db2password

5. You should see the Database Connect Information.

For additional assistance, go to the following Web site:

https://aurora.vcu.edu/db2help/db2i4/frame3.htm#idx

Uncataloging a remote database using DB2

You need the following information to uncatalog a remote database on DB2:

v Database alias or the database name if no alias was specified when you

cataloged the database

To uncatalog a remote database using DB2, do the following:

1. Bring up a Command Prompt window on Windows.

2. To uncatalog the database, enter the following command, where databaseAlias is

the database alias:

db2 uncatalog database databaseAlias

For example, to uncatalog database SAMPLE (which was given the alias sam1),

enter the following command:

db2 uncatalog database sam1

If you did not specify a database alias when you cataloged the database, use

the name of the database. For example, if you did not specify sam1 as the

database alias, enter the following command:

db2 uncatalog database SAMPLE

For additional assistance, go to the following Web site:

https://aurora.vcu.edu/db2help/db2i4/frame3.htm#idx

416 Rational Software Development Platform: VisualAge Generator to EGL Migration Guide

Useful Queries

If you modify the sample Stage 1 migration tool or develop your own Stage 1

migration tool, the following SQL queries might be useful in verifying your

changes.

Note:

v These examples can run from a DB2 Command Window.

v These examples assume that you use the default migration database name

(VGMIG) and the default schema (MIGSCHEMA).

v Unless noted otherwise, the entire DB2 command must be entered on one

line. The commands shown later in this document might be on several

lines due to space limitations.

v These examples require that you connect to the database first. To connect

to the database, run the following:

db2 connect to VGMIG

To assist in determining if the Stage 1 migration tool ran correctly, run the

following .bat file that is located in your VAGen-installation\ide\vgmigration

directory for Java or your VAGen-installation directory for Smalltalk:

checkStage1.bat

The .bat file runs several queries:

v List of the migration plan names in the database

v Total number of parts in the database

v Other queries to check the validity of the External Source Format and parts

placement into EGL files.

The results of the first two queries should be greater than 0. The results of the

other queries should be 0. If your results differ, then there was a problem during

Stage 1 migration and you should contact IBM Support.

To determine if a VAGen part has been migrated:

 db2 select configplanname, configplanversion, vgpartname, vgparttime, is_migrated

 from migschema.vgpart where vgpartname = ’yourPartName’

To verify the first few characters of the External Source Format for all parts in the

migration database:

 db2 select vgpartname, cast(vgesfsource as char(n)) from migschema.vgpart

n is a number between 1 and 256 and is the number of characters you want to

display.

To determine if any parts in the migration database do not begin with valid

External Source Format tags:

 db2 select vgpartname, cast(vgesfsource as char(n))

 from migschema.vgpart where vgesfsource not like ’:%’

n is a number between 1 and 256 and is the number of characters you want to

display.

To reset all parts in the migration database if you want to rerun Stage 2 and 3 of

migration without rerunning Stage 1:

Appendix G. Migration Database 417

db2 update migschema.vgpart set is_migrated = ’N’, eglsource = NULL,

 eglpartname = NULL

 db2 delete from migschema.translation_msgs

To backup the migration database:

 db2 backup database vgmig to x:\mybackups\backupName

x:\mybackups\backupName is the drive and directory where you want the backup to

be placed. Several subdirectories will be created under x:\mybackups\backupName.

To restore the migration database that you previously backed up:

 db2 restore database vgmig from x:\mybackups\backupName REPLACE EXISTING

x:\mybackups\backupName is the drive and directory where you want the backup to

be placed.

418 Rational Software Development Platform: VisualAge Generator to EGL Migration Guide

Appendix H. Migration tool performance

There are many factors that affect the performance of the migration tool. These

factors include the following:

v General performance for Stage 1, 2 and 3

– Memory.

– Processor speed.

– Local or remote DB2 database. For remote databases, the speed of the

network connection is critical.

– Number of Java projects and packages or number of Smalltalk configuration

maps and applications.

– Number of parts and their distribution by part type.

– Number of migration sets.

– Number of lines in function parts.
v Performance for Stage 1

– Clean Java workspace or Smalltalk image before starting migration.

– Local or remote Java repository or Smalltalk library. For remote repositories or

libraries, the speed of the network connection is critical. Some customers

improve the processing speed by copying their repository to the machine

where migration is running.

– Complexity of renaming rules.

– Whether the migration set already exists in the migration database. If you are

recreating a migration set with a different set of renaming rules, it is more

efficient to recreate the SQL tables by running setuptables.bat than to have the

Stage 1 migration tool clean out the original migration set. Recreating the SQL

tables is only practical if there are no other migration sets in the migration

database.
v Performance for Stage 2 and 3

– Setting for the VMArgs option in the .ini file. When the VMArgs option is not

set, the refresh and rebuild of the workspace in Stage 3 does not run reliably.

You must set this option. For details of how to set this option, see “Start up

parameters” on page 155.

– Migration options.

Given the number of factors involved, there is no specific formula that can predict

migration run time. However, the following sections provide some antedotal

guidance on how long the various stages of migration might take:

v Number of projects, packages, parts and programs

v Number of migration sets and other migration options

v Processor speed

v Number of lines in function parts

v Clean Java workspace for Stage 1

In addition, there is a section that provides some information that you can use to

help plan your disk space requirements.

© Copyright IBM Corp. 2004, 2006 419

Number of projects, packages, parts, and programs

The next table provides information on how long the various stages of migration

might take. These tests were run using Windows XP with a 1.0 gigaHertz of

memory and a 1.1 gigaHertz processor speed. The measurements are for EGL

6.0.1.1, and all times are in minutes.

 Table 161. Effect of migration set size on migration times

Test

case

Number

of

projects

Number

of

packages

Number

of parts

Number of

programs

Stage 1

time

Stage 2

time

Stage 3

time to

write

files

Stage 3

time to

refresh

or build

1 1 98 18,403 1,246 53 10 6 9

2 1 10 2,771 147 23 5 1 2

3 3 29 2,660 33 8 1 1 1

4 3 44 7003 25 62 6 4 14

5 4 92 10,601 25 16 2 2 4

6 5 35 8,238 100 23 3 2 4

7 474 570 11,280 162 46 10 7 22

8 6 118 15,250 71 91 9 6 9

Here are some general observations based on Table 161:

v Test cases 2 and 3 have similar numbers of parts, but test case 2 takes 3 times as

long to run in Stage 1 and 5 times as long to run in Stage 2. Test case 2 has 4.5

times as many programs to analyze for associates during Stage 1 and 2. So the

number of programs has an impact on the run times.

v Test cases 5 and 7 have similar numbers of parts, but test case 7 takes nearly 3

times as long in Stage 1 and 5 times as long to run in Stage 2. Test case 7 has

many more programs to analyze for associates during Stage 1. In addition, test

case 7 has relatively few data items compared to test case 5. In VAGen, data

items never have associates so the Stage 1 migration tool does not attempt to

determine associates for the data items. Test case 7 also takes 3.5 times as long to

write the files in Stage 3. There are more generatable parts for which to analyze

associates. Because each generatable part is in its own file, there are more files to

write. Proportionally fewer parts are placed into the CommonParts.egl and

UnusedParts.egl files than in test case 5. The files are smaller and there are more

of them.

v Test case 1 has 50% more parts than test case 7, but test case 7 takes more than

twice as long to refresh and rebuild the workspace. Test case 7 has many more

projects and packages to analyze during the build. In addition, in test case 7

there are 162 project cycles detected during the build process, so this contributes

to the longer build times.

Based on the information in Table 161, if you have several hundred or even 1000

programs you might want to migrate them as a single migration set even if the

programs are split across several subsystems. This assumes that the subsystems all

use the same version of your common projects and that the subsystems do not

have any duplicate part names.

420 Rational Software Development Platform: VisualAge Generator to EGL Migration Guide

Number of migration sets and other migration options

Table 162 shows the impact of consolidating into a smaller number of migration

sets. It also shows the impact of the Stage 2 Migrate remaining VAGen parts option

and the Stage 3 Override existing files option. The table shows the same set of

VAGen projects migrated using 3 different techniques. There are 10 projects, 228

packages, 19255 parts, and 225 programs. The two common projects contain 7734

parts and 41 programs. This represents 40% of the parts. Each of the 8 migration

sets represents one subsystem and includes the two common projects. There are no

duplicate parts in the 8 subsystems so it is possible to migrate all the subsystems

as a single migration set as shown in TestCase 10C. The measurements for EGL

6.0.1, and all times are in minutes.

 Table 162. Effect of number of migration sets and migration options

Test

case

Number

of

migration

sets

Migrate

remaining

VAGen

parts

Override

existing

files

Stage 1

time

Stage 2

time

Stage 3

time to

write files

Stage 3

time to

refresh or

build

10A 8 No No 575 54 780

10B 8 Yes Yes 575 55 880

10C 1 Yes Yes 219 34 159

Here are some general observations based on Table 162:

v Test cases 10A and 10B use the same Stage 1 database as the starting point for

Stages 2 and 3. These two test cases differ only in the options chosen for Stage 2

and Stage 3.

– In Stage 2, there is little impact due to changing the Migrate remaining

VAGen parts option. This is probably due to the relatively small number (250)

of unused parts.

– In Stage 3, the time to merge in newly migrated parts into existing files is less

than the time to rewrite the files completely. When you select the Override

existing files option, each of the files in the common projects must be written

each time. When you deselect the Override existing files option, the migration

tool does not rewrite existing files if there are no newly migrated parts to

merge into the file. In this particular test case, most of the common parts are

used by the first two migration sets, so the time to merge additional parts is

less than the time to rewrite the existing files for each migration set.

– In Stage 3, there might also be a small impact in the analysis time because the

unused parts do not have to be analyzed once to determine their import

statements.
v Test case 10C added one project that contains a high-level PLP part that points

to the 10 other projects. This technique enables all 8 subsystems to migrate as a

single migration set.

– In Stage 1, there is a significant savings in time because the common parts do

not need to be loaded and analyzed for each migration set.

– In Stage 2, there is some savings because the common parts do not have to be

analyzed for cross part migration in multiple migration sets. However,

because the migration tool does convert all the parts, there is not as big a

percentage savings as in Stages 1 and 3.

– In Stage 3, there is a significant savings in time due to a combination of

several factors:

Appendix H. Migration tool performance 421

- The common parts are only analyzed once to determine their import

statements.

- The EGL files are only written one time.

- There is no need for any merge logic for the files because all the parts are

migrated at the same time.

Processor speed

Table 163 shows the impact of changing the processor speed from 1.1 gigaHertz to

1.6 gigaHertz. Both machines had 1.0 gigaHertz of memory. The 1.1 gigaHertz

machine used Windows 2000; the 1.6 gigaHertz machine used Windows XP. The

processor speed has a significant impact, particularly on the Stage 1 and 2

processing time. The measurements are for EGL 5.1.2.

 Table 163. Effect of processor speed on migration times

1.1 gigaHertz 1.6 gigaHertz

Test

case

Stage 1

time (in

hours)

Stage 2

time (in

hours)

Stage 3

time to

write

files (in

hours)

Stage 3

time to

refresh

or build

files (in

hours)

Stage 1

time (in

hours)

Stage 2

time (in

hours)

Stage 3

time to

write

files (in

hours)

Stage 3

time to

refresh

or build

files (in

hours)

10 1.2 1.0 0.4 0.2 0.4 0.3 0.3 0.1

11 3.0 1.6 1.8 0.9 1.6 0.6 0.9 0.9

Based on Table 163, you might want to use a machine with faster processor speed

during migration.

Number of lines in function parts

At one point in time, VisualAge Generator had a problem that resulted in a series

of blank lines being inserted into functions. In some cases, as many as 32,000 blank

lines were inserted. These extraneous blank lines have a severe impact on

performance. Table 164 shows the impact of the number of lines in a function on

the migration times. The test case contains 2 projects, 17 packages, 919 parts, and

87 programs. There were 497 functions, 8 of which had numerous blank lines

(suspected to be in the 30,000 range). The measurements are for EGL 5.1.2, and all

times are in minutes.

 Table 164. Effect of in-function lines on migration times

Before removing blank lines in

VAGen

After removing blank lines in VAGen

Test

case

Stage 1

time

Stage 2

time

Stage 3

time to

write

files

Stage 3

time to

refresh

or build

files

Stage 1

time

Stage 2

time

Stage 3

time to

write

files

Stage 3

time to

refresh

or build

files

12 40 25 1 3 12 11 1 3

There is a dramatic difference in the Stage 1 and 2 processing time just from

removing the extraneous blank lines before starting migration. If you know of

functions that have large numbers of blank lines, you should eliminate them before

migration. However, due to the rarity of the problem in VisualAge Generator, it is

422 Rational Software Development Platform: VisualAge Generator to EGL Migration Guide

probably not cost effective to search for these functions prior to migration. If there

are more than 3 consecutive blank lines, the migration tool automatically

eliminates the additional blank lines during Stage 2 migration. Therefore, there is

no change in the processing time for Stage 3. There is improved performance in

EGL due to the elimination of these blank lines.

Clean Java workspace for Stage 1

The next table shows the impact of having a clean workspace at the start of Stage 1

migration. Test case 13 contains 3 projects, 29 packages, 2660 parts, and 33

programs. Test case 14 contains 7 versions of a migration set. The first version

contains 3 projects, 4 packages, 30 parts and no programs. The last version contains

6 projects, 11 packages, 66 parts, and 7 programs. The measurements are for EGL

5.1.2, and all times are in minutes.

 Table 165. Effect of clean Java workspace on migration times

Test case Stage 1 Time without Clean

Workspace

Stage 1 Time with Clean

Workspace

13 17 12

14 11 1

Based on Table 165, you should consider starting with a clean workspace if you are

migrating from VisualAge Java. For details on how to start with a clean Java

workspace, see “Improving performance” on page 126.

For VisualAge Smalltalk, similar time savings are likely. Therefore, if you are

migrating from VisualAge Smalltalk, you should also consider starting with a clean

image. For details on how to start with a clean Smalltalk image, see “Improving

performance” on page 146.

Disk space requirements

There is no direct relationship between the disk space requirements of a VisualAge

Generator application and the corresponding EGL application.

The next table provides disk space requirements for the same test cases shown in

Table 161 on page 420. The EGL measurements were all done immediately after

migration, before correcting any messages in the Problems view and before doing

any generation. The measurements are for EGL 6.0.1.1, and all sizes are in

megabytes (MB).

 Table 166. Disk space requirements

Test case VAGen

.dat file

size

DB2

backup file

size for

Stage 1

EGL project

interchange

file

EGL

workspace

size

EGL

.metadata

directory

size

EGL total

workspace

size

1 25.5 128.0 6.4 51.5 29.7 81.2

2 3.5 48.0 23.6 30.8 27.0 57.8

3 3.0 36.0 23.6 31.9 33.1 65.0

4 14.9 104.0 25.5 54.4 45.6 100.0

5 11.1 60.0 24.1 48.9 41.2 90.1

6 8.0 60.0 1.0 16.8 20.9 37.7

Appendix H. Migration tool performance 423

Table 166. Disk space requirements (continued)

Test case VAGen

.dat file

size

DB2

backup file

size for

Stage 1

EGL project

interchange

file

EGL

workspace

size

EGL

.metadata

directory

size

EGL total

workspace

size

7 33.5 124.0 6.0 44.1 95.9 140.0

8 13.2 136.0 1.5 33.2 26.0 59.2

Here are some general observations based on Table 166 on page 423:

v The VAGen .dat file size is the size of an exported VisualAge Java repository file

that contains only the VAGen projects and packages from the migration set.

v The DB2 backup file size is the size of the backup file for the migration

database at the end of Stage 1 after running the DB2 runstats.bat command file.

The Stage 2 size will be larger due to adding the EGL source code to the

database.

v Test cases 1, 6, 7, and 8 do not have any VAGen Web Transaction or UI records.

The EGL project interchange file size is much smaller than the VAGen .dat file

size.

v Test cases 2, 3, 4, and 5 all have VAGen Web Transaction programs and UI

records. The migration tool creates EGL Web projects for each project within the

test case that contains either a VAGen Web Transaction or UI record. EGL Web

projects contain the contain the following:

– standard .properties files such as the csogw.properties and gw.properties files

– standard .jar files such as the hpt.jar and hptGateway.jar files

– standard .jsp files such as the Vagen1LogonPage.jsp and CSOERRORUIR.jsp

files

– .jsp files that are generated for the UI records in the project

These files result in a much larger project interchange file size than for projects

that do not contain VAGen Web Transaction programs or UI records.

v EGL uses the .metadata directory to store information needed for building the

workspace. Test case 7 has a much larger .metadata directory than the other

projects. This is due to the much larger number of projects and packages for test

case 7. Therefore, if you have many projects and packages, you should allow for

more space for the .metadata directory. For example, if you organized your

source code with one program per project in VAGen, then you should probably

plan for a correspondingly larger .metadata directory. The same analysis applies

for the total workspace size.

424 Rational Software Development Platform: VisualAge Generator to EGL Migration Guide

Appendix I. Required modifications if you migrated with a

previous version of the migration tool

If you migrated from VisualAge Generator to EGL with a previous version of the

migration tool, you might need to make the some changes by hand. The following

sections describe the changes that are required:

v General changes

v Changes due to IMS and DL/I support

v Changes due to web transaction support

General changes

The following general changes have been made for EGL 6.0.1:

v Changes due to the @ sign.

v Additional EGL replacements for some EZE string functions.

v Also refer to the online help topic EGL to EGL Migration for additional changes

you might need to make.

Changes due to the @ sign

VisualAge Generator: Part names and nonshared item names can start with the @

symbol.

EGL prior to 6.0.1: In VisualAge Generator Compatibility mode, part names and

variable names can start with the @ symbol.

EGL 6.0.1: Even in VisualAge Generator Compatibility mode, part names and

variable names cannot start with the @ symbol.

Required change: Change any part name or variable name that starts with the @

symbol.

Additional EGL replacements for some EZE string functions

VisualAge Generator: VisualAge Generator supports EZE string functions.

VisualAge Generator tolerates the use of numeric items as character arguments in

some of the EZE string functions.

EGL prior to 6.0.1: The migration tool converts the EZE string functions to the

equivalent EGL system function. However, these functions are only intended to

support character data.

EGL 6.0.1: EGL has added three new functions to support the use of numeric items

as character arguments. The functions provide improved support for migrating

VAGen customers. The original EGL functions are still available. The migration tool

always converts to the new EGL functions because these provide the best match

for VAGen behavior.

Required changes to previously migrated parts: See Table 167 on page 426 for the

original VisualAge Generator EZE string functions that are affected, the EGL source

produced by the migration tool prior to EGL 6.0.1, and the EGL source produced

by the migration tool for EGL 6.0.1. You only need to change the EGL function

© Copyright IBM Corp. 2004, 2006 425

names if there is a message on the Problems view about an invalid argument for

one of the affected EGL functions. For example, there might be a message such as

one of the following, where eglFunctionName is one of the functions listed in the

center column of Table 167 on page 426:

v IWN.VAL.6681.e functionName - The function eglFunctionName(parameterTypeList)

is not applicable for the arguments (argumentTypeList).

v IWN.VAL.7553.e functionName - Argument n for eglFunctionName must be a

string item, string constant, or string literal.

 Table 167. EZE string functions changed for EGL 6.0.1

VAGen Language Element EGL prior to 6.0.1 EGL 6.0.1

EZESCMPR strLib.compareStr VGLib.compareBytes

EZESCNCT strLib.concatenate VGLib.concatenateBytes

EZESCOPY strLib.copyStr VGLib.copyBytes

Changes due to IMS and DL/I support

EGL now supports the IMS runtime environments and DL/I I/O. If you previously

migrated parts that have language elements related to IMS or DL/I, you might

need to make changes to the following:

v Program part

v PSB part and DL/I segment record

v Function I/O - PSB name, database identifier, scan parent, scan update, and

SSAs

v EZEDL* special function words and CSPTDLI service routine

v Generation option parts

v Linkage table parts

v Resource association parts

Program part

VisualAge Generator: VisualAge Generator supports a program that specifies a

PSB for use in the IMS runtime environments or for use with a DL/I database in

the MVS or VSE runtime environments. VisualAge Generator automatically

considers all DL/I segment records specified in the program’s PSB as associates of

the program. VisualAge Generator supports passing a PSB (EZEDLPSB) or PCBs

(EZEDLPCB[n], where n is a numeric literal) to a called program.

EGL prior to 6.0.1: The migration tool includes the PSB information as a comment

in the program. The tool does not add any DL/I segment records from the PSB to

the program’s record declaration list. The tool comments out program parameters

that reference EZEDLPSB or EZEDLPCB[n].

EGL 6.0.1: EGL supports programs that specify a PSB for use in the IMS runtime

environments or for use with a DL/I database in the z/OS runtime environment.

EGL requires that all DL/I segment records specified in the program’s PSB be

defined. EGL also supports program parameters to receive the PSB or PCBs. The

migration tool converts to the EGL syntax.

Required changes to previously migrated parts: For help in specifying the PSB for

the program, see Table 104 on page 271. For help in manually converting

EZEDLPSB and EZEDLPCB[n] to the correct EGL syntax, see Table 103 on page

426 Rational Software Development Platform: VisualAge Generator to EGL Migration Guide

269. Be sure to add declarations for all DL/I segment records referenced in the

program’s I/O statements or in the hierarchical path to a segment that is

referenced in an I/O statement. Alternatively, migrate the program and its

associates again.

PSB part and DL/I segment record

VisualAge Generator: VisualAge Generator supports PSB parts and DL/I segment

records.

EGL prior to 6.0.1: The migration tool ignores PSB parts and DL/I segment

records.

EGL 6.0.1: EGL supports PSB parts and DL/I segment records. The migration tool

converts these parts.

Required changes to previously migrated parts: None. These parts were not

previously migrated. You must migrate the parts using the migration tools

provided with EGL 6.0.1.

Function I/O - PSB name, database identifier, scan parent,

scan update, and SSAs

VisualAge Generator: VisualAge Generator supports a DL/I segment record as the

I/O object for a function. VisualAge Generator permits you to specify a PSB and

database identifier for the DL/I call. For a SCAN I/O option, you can specify that

you want a scan parent (GNP) call or a scan update (GHN) call. You can also

modify the default SSAs.

EGL prior to 6.0.1: The migration tool migrates functions that contain a DL/I I/O

object as though the PSB, database identifier, scan parent, scan update, and SSAs

are not specified. This preserves as much of your function logic as possible. The

converted EGL is valid if the VAGen DL/I Call Editor was never used for the

function. The migration tool does not include the PSB, database identifier, scan

parent, scan update, or modified SSAs as comments.

EGL 6.0.1: EGL supports DL/I segment records for I/O in functions, including the

usingPCB, inParent, and forUpdate options, as well as modified SSAs. The

migration tool converts DL/I I/O functions to the equivalent EGL function.

Required changes to previously migrated parts: You could not use the DL/I

functions in EGL releases prior to 6.0.1. You must migrate the DL/I functions again

using the migration tools provided with EGL 6.0.1. Be sure to include the DL/I

segment records.

EZEDL* special function words and CSPTDLI service routine

VisualAge Generator: VisualAge Generator supports EZEDL* special function

words and the CSPTDLI service routine.

EGL prior to 6.0.1: The migration tool converts the EZEDL* special function words

and the CSPTDLI service routine to its ″best guess″ as to the eventual EGL syntax.

This preserves as much of your function logic as possible. The ″best guess″ varies

with each release of EGL.

Appendix I. Required modifications if you migrated with a previous version of the migration tool 427

EGL 6.0.1: EGL provides replacements for the EZEDL* special function words and

the CSPTDLI service routine. The migration tool now uses the EGL 6.0.1

replacements.

Required changes to previously migrated parts: See Table 168 for the original

VisualAge Generator EZEDL* special function words and CSPTDLI service routine,

the EGL source produced by the migration tool for EGL 6.0.0.1, and the EGL

language element required for EGL 6.0.1. You must change any functions that

reference incorrect replacements for the EZEDL* special function words or

CSPTDLI.

 Table 168. EZEDL* special function words and CSPTDLI service routine

VAGen Language Element EGL 6.0.0.1 language element

produced by the migration tool

EGL 6.0.1 language element and

required change

EZEDLCER dliVar.dliCicsErrorCode dliVar.cicsError

EZEDLCON dliVar.dliCicsConditionCode dliVar.cicsCondition

EZEDLDBD dliVar.dliDbdName dliVar.dbName

EZEDLERR dliVar.handleHardDLIErrors dliVar.handleHardDLIErrors

EZEDLKEY dliVar.dliKey dliVar.keyArea[1:dliVar.keyAreaLen]

EZEDLKYL dliVar.dliKeyLength dliVar.keyAreaLen

EZEDLLEV dliVar.dliLevel dliVar.segmentLevel

EZEDLPCB[n] where n is a

numeric literal

In statements, the migration tool

converts to dliVar.dliPCB[n]. In a

program’s called parameter list, the

migration tool converts to a comment

that specifies dliVar.dliPCB[n] with a

type definition of dliVar.dliPCB[n].

The migration tool always sets the

variable that declares the program’s PSB

to psb. Therefore, in statements,

EZEDLPCB[n] converts as follows:

v EZEDLPCB[0] converts to psb.iopcb.

v EZEDLPCB converts to psb.pcb1,

because 1 is the default subscript.

v EZEDLPCB[n], where n is a numeric

literal, converts to psb.pcbn.

In a program’s called parameter list,

special considerations apply. For details,

see Table 103 on page 269.

EZEDLPRO dliVar.dliPcbOptions dliVar.procOptions

EZEDLPSB In statements, the migration tool

converts to dliVar.dliPsbName.

In a program’s called parameter list,

the migration tool converts to a

comment that specifies

dliVar.dliPsbName with a type

definition of dliVar.dliPsbName.

In statements except the CALL

statement, EZEDLPSB converts to

dliLib.psbData.psbName.In the CALL

statement, EZEDLPSB converts to

dliLib.psbData.

In a program’s called parameter list,

special considerations apply. For details,

see Table 103 on page 269.

EZEDLRST dliVar.dliCicsProgramRestarted dliVar.cicsRestart

EZEDLSEG dliVar.dliSegmentName dliVar.segmentName

EZEDLSSG dliVar.dliSegmentCount dliVar.numSensitiveSegs

EZEDLSTC dliVar.dliStatusCode dliVar.statusCode

EZEDLTRM converseVar.commitOnConverse converseVar.commitOnConverse

Service Routine:

v CSPTDLI

EGL equivalent routine:

v dliLib.callDLI

EGL equivalent routine:

v VGLib.VGTDLI

428 Rational Software Development Platform: VisualAge Generator to EGL Migration Guide

Generation option parts

VisualAge Generator: VisualAge Generator supports the following generation

options for IMS environments:

v /system=IMSVS and IMSBMP

v /mfsdev

v /spa=size,ADF,bytePosition, where size and bytePosition are numeric literals

v /workdb=DLI and SQL

v other IMS-related generation options

EGL prior to 6.0.1: The migration tool converts most IMS-related generation

options to EGL build descriptor options that are valid for EGL 6.0.1. These options

can be viewed in the Text Editor, but not in the EGL Build Parts Editor. The

migration tool comments out the /mfsdev generation option and the /workdb

values of DLI and SQL. The tool converts the /spa option to

spaSize=″size,ADF,bytePosition″.

EGL 6.0.1: EGL supports the IMSVS and IMSBMP runtime environments, including

replacements for the IMS-related generation options. The migration tool supports

conversion of these generation options.

Required changes to previously migrated parts: See Table 141 on page 318 for

help in manually converting the comments for the /mfsdev and /workdb

generation options to EGL build descriptor options. In addition, you must change

the spaSize build descriptor option into 3 new options: spaSize=″size″,

spaADF=″YES″ or ″NO″, and spaStatusBytePosition=″bytePosition″. Alternatively,

migrate the generation options part again and compare the results to your current

EGL part definition.

Linkage table parts

VisualAge Generator: VisualAge Generator supports the following value for the

/remoteComType for :calllink entries in the linkage table for the IMS

environments:

v appcims

EGL prior to 6.0.1: The migration tool converts to remoteComType=″appcims″.

EGL 6.0.1: EGL does not support support remoteComType=″APPCIMS″. The

replacement values are IMSJ2C and IMSTCP. The migration tool converts to

remoteComType=″appcims″ to preserve as much of your linkage table entry as

possible.

Required changes to previously migrated parts: Determine whether you want to

use IMSJ2C or IMSTCP. Refer to the online helps for details about the EGL

remoteComType attribute and the options that are available in EGL.

Resource association parts

VisualAge Generator: VisualAge Generator supports the following resource

association options for IMS environments:

v /system=imsvs or imsbmp

v /filetype=gsam, mmsgq, smsgq, or seq. gsam is valid for MVSBatch, seq is valid

for IMSBMP.

v /pcbno=n, where n is a numeric literal

Appendix I. Required modifications if you migrated with a previous version of the migration tool 429

EGL prior to 6.0.1: The migration tool comments out resource association entries

for unsupported runtime environments, for unsupported file types, or that contain

/pcbno.

EGL 6.0.1: EGL supports the IMSVS and IMSBMP runtime environments. EGL also

supports the file types GSAM, MMSGQ, and SMSGQ. GSAM is supported for

zosBatch. SEQ is valid for IMSBMP. The migration tool supports conversion of the

new /system values, /filetype values, and the /pcbno option.

Required changes to previously migrated parts: See Table 147 on page 341 for

help in manually converting the resource association comments to EGL resource

association entries. Alternatively, migrate the resource association part again and

compare the results to your current EGL part definition.

Changes due to Web transaction support

The following changes have been made due to adding Web transaction support to

EGL. If you previously migrated parts that have language elements related to Web

transactions, you might need to make changes to the following:

v DataItem parts - help and label text

v Web transaction program and UI Record parts

v XFER statement

v Generation option parts

DataItem parts - help and label text

VisualAge Generator: VisualAge Generator supports help and UI label text for

data item parts that are used in UI records.

EGL prior to 6.0.1: The migration tool converts the help and label text to a ″best

guess″ for the EGL help and displayName properties. If the help or label text has

multiple lines, the migration tool concatenates the lines and includes \r\n for a

carriage return and line feed for each line of text other than the last.

EGL 6.0.1: EGL supports help and displayName text for DataItem parts. If the help

text has multiple lines, the migration tool concatenates the lines, but does not

include \r\n for a carriage return and line feed for each line of text other than the

last. This provides support for javaScript in the help text. If the UI label text has

multiple lines, the migration tool concatenates the lines, but includes \n for a line

break for each line of text other than the last.

Required changes to previously migrated parts: Modify the DataItem parts. If

there are multiple lines specified for the help property, delete the \r\n at the end

of each line other than the last. If there are multiple lines specified for the

displayName property, change the \r\n to \n for each line of text other than the

last.

Web transaction program and UI Record parts

VisualAge Generator: VisualAge Generator supports Web transaction programs

and User Interface (UI) records.

EGL prior to 6.0.1: The migration tool ignores Web transaction programs or UI

records.

430 Rational Software Development Platform: VisualAge Generator to EGL Migration Guide

EGL 6.0.1: EGL supports VGWebTransaction programs and VGUI records. The

migration tool converts these parts.

Required changes to previously migrated parts: None. These parts were not

previously migrated. You must migrate the parts using the migration tools

provided with EGL 6.0.1.

XFER statement

VisualAge Generator: VisualAge Generator supports XFER with a map or UI

record.

EGL prior to 6.0.1: The migration tool converts an XFER with a map to an EGL

show statement and (as a ″best guess″) converts an XFER with a UI record to an

EGL forward statement. This preserves as much of your logic as possible.

EGL 6.0.1: EGL uses the show statement for both forms and VGUI records. The

migration tool converts an XFER with a map or UI record to a show statement.

Required changes to previously migrated parts: Edit the function and change the

forward statement to a show statement.

Generation option parts

VisualAge Generator: VisualAge Generator supports the following generation

options for Web transaction programs:

v /genuirecords

v /javadestdir, /javadesthost, /javadestpassword, /javadestuid, and /javasystem.

v /genout, /genresourcebundle, /messageTablePrefix, /resourceBundleLocale, and

/targnls.

EGL prior to 6.0.1: The migration tool converts the /genuirecords generation

option to the EGL genUIRecords=″YES″ build descriptor option. The tool

comments out the other Web-transaction-related generation options.

EGL 6.0.1: EGL supports VGWebTransaction programs and VGUI records,

including replacements for the Web-transaction-related generation options.

genVGUIRecords is the replacement for /genuirecords. In addition, if you generate

VGWebTransaction programs for COBOL runtime environments, EGL requires that

you split your original VAGen generation options part into 2 EGL parts: one for

generating the VGWebTransaction program for the COBOL runtime environment

and one for generating the Java-related outputs for the VGUI record. The

migration tool supports conversion of the Web-transaction-related generation

options, as well as splitting the generation option part into 2 EGL build descriptor

parts.

Required changes to previously migrated parts: See Table 141 on page 318 for

help in manually converting the comments for the generation options to EGL build

descriptor options. The table also indicates which options must be split into the

secondary target build descriptor part for generating the Java-related outputs for

VGUIRecords. In addition, you must change the genUIRecords build descriptor

option to genVGUIRecords. Alternatively, migrate the generation options part

again and compare the results to your current EGL part definition.

Appendix I. Required modifications if you migrated with a previous version of the migration tool 431

432 Rational Software Development Platform: VisualAge Generator to EGL Migration Guide

Notices

Note to U.S. Government Users Restricted Rights - Use, duplication or disclosure

restricted by GSA ADP Schedule Contract with IBM Corp.

This information was developed for products and services offered in the U.S.A.

IBM may not offer the products, services, or features discussed in this document in

other countries. Consult your local IBM representative for information on the

products and services currently available in your area. Any reference to an IBM

product, program, or service is not intended to state or imply that only that IBM

product, program, or service may be used. Any functionally equivalent product,

program, or service that does not infringe any IBM intellectual property right may

be used instead. However, it is the user’s responsibility to evaluate and verify the

operation of any non-IBM product, program, or service.

IBM may have patents or pending patent applications covering subject matter

described in this document. The furnishing of this document does not give you

any license to these patents. You can send license inquiries, in writing, to:

IBM Director of Licensing

IBM Corporation

North Castle Drive

Armonk, NY 10504-1785

U.S.A.

For license inquiries regarding double-byte (DBCS) information, contact the IBM

Intellectual Property Department in your country or send inquiries, in writing, to:

IBM World Trade Asia Corporation

Licensing

2-31 Roppongi 3-chome, Minato-ku

Tokyo 106-0032, Japan

The following paragraph does not apply to the United Kingdom or any other

country where such provisions are inconsistent with local law:

INTERNATIONAL BUSINESS MACHINES CORPORATION PROVIDES THIS

PUBLICATION “AS IS” WITHOUT WARRANTY OF ANY KIND, EITHER

EXPRESS OR IMPLIED, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED

WARRANTIES OF NON-INFRINGEMENT, MERCHANTABILITY OR FITNESS

FOR A PARTICULAR PURPOSE. Some states do not allow disclaimer of express or

implied warranties in certain transactions, therefore, this statement may not apply

to you.

Licensees of this program who wish to have information about it for the purpose

of enabling: (i) the exchange of information between independently created

programs and other programs (including this one) and (ii) the mutual use of the

information which has been exchanged, should contact:

IBM Corporation

SWS General Legal Counsel

Department TL3 Building 062

P. O. Box 12195

Research Triangle Park, NC 27709-2195

© Copyright IBM Corp. 2004, 2006 433

IBM has made reasonable efforts to ensure the accuracy of the information

contained in this publication. If a softcopy of this publication is provided to you

with the product, you should consider the information contained in the softcopy

version the most recent and most accurate. However, this publication is presented

“as is” and IBM makes no warranties of any kind with respect to the contents

hereof, the products listed herein, or the completeness or accuracy of this

publication.

This information could include technical inaccuracies or typographical errors.

Changes are periodically made to the information herein; these changes will be

incorporated in new editions of the publication. IBM may make improvements

and/or changes in the product(s) and/or the program(s) described in this

publication at any time without notice.

IBM may change this publication, the product described herein, or both.

Such information may be available, subject to appropriate terms and conditions,

including in some cases, payment of a fee.

The licensed program described in this information and all licensed material

available for it are provided by IBM under terms of the IBM Customer Agreement,

IBM International Program License Agreement, or any equivalent agreement

between us.

Information concerning non-IBM products was obtained from the suppliers of

those products, their published announcements or other publicly available sources.

IBM has not tested those products and cannot confirm the accuracy of

performance, compatibility or any other claims related to non-IBM products.

Questions on the capabilities of non-IBM products should be addressed to the

suppliers of those products.

All statements regarding IBM’s future direction or intent are subject to change or

withdrawal without notice, and represent goals and objectives only.

This information contains examples of data and reports used in daily business

operations. To illustrate them as completely as possible, the examples include the

names of individuals, companies, brands, and products. All of these names are

fictitious and any similarity to the names and addresses used by an actual business

enterprise is entirely coincidental.

COPYRIGHT LICENSE:

This information contains sample application programs in source language, which

illustrate programming techniques on various operating platforms. You may copy,

modify, and distribute these sample programs in any form without payment to

IBM, for the purposes of developing, using, marketing or distributing application

programs conforming to the application programming interface for the operating

platform for which the sample programs are written. These examples have not

been thoroughly tested under all conditions. IBM, therefore, cannot guarantee or

imply reliability, serviceability, or function of these programs. You may copy,

modify, and distribute these sample programs in any form without payment to

IBM for the purposes of developing, using, marketing, or distributing application

programs conforming to IBM’s application programming interfaces.

If you are viewing this information softcopy, the photographs and color

illustrations may not appear.

434 Rational Software Development Platform: VisualAge Generator to EGL Migration Guide

Trademarks

The following terms are trademarks of the IBM Corporation in the United States or

other countries:

v AIX

v CICS

v DB2

v IBM

v IMS

v iSeries

v MVS

v OS/2

v OS/400

v Rational

v VisualAge

v WebSphere

v z/OS

Intel is a trademark of Intel Corporation in the United States, other countries, or

both.

Java and all Java-based trademarks are trademarks of Sun Microsystems, Inc. in the

United States, other countries, or both.

Linux is a trademark of Linus Torvalds in the United States, other countries, or

both.

Microsoft®, Windows, and Windows NT® are trademarks of Microsoft Corporation

in the United States, other countries, or both.

UNIX is a registered trademark of The Open Group in the United States and other

countries.

Other company, product or service names, may be trademarks or service marks of

others.

Notices 435

436 Rational Software Development Platform: VisualAge Generator to EGL Migration Guide

Index

A
alternate specification record 370, 371

ambiguous situations 23, 25, 28, 31, 32,

61, 150, 185, 227

data items 61

EZE words 107

functions 89

map groups and maps 72

other statements 97

programs 83

records 66

tables 71

appendix index entry 221, 228, 235, 249,

252, 255, 275, 292, 305, 313, 316, 357,

385, 411

array 33, 246, 261, 294, 298, 306

dynamic 4

map 48

multidimensional 4

associated parts 4, 28, 29, 32, 36, 47, 61,

128, 149, 366

migrating with 42

migrating without 43

associated program parts 84

AUDIT 214

B
batch mode 17, 23, 24, 155, 163, 166,

168, 179, 180

bind control 187

bind control part 188, 191, 192

program-specific 192

using as template 190

build descriptor 186, 187

debug 188

default 197

default 187

EGL 192

build descriptor option 192

bind 192

genproject 188

linkedit 193

build descriptor options 185, 188, 199,

200

COBOL generation
reviewing 187

Java generation
reviewing 188

reviewing
general 186

build descriptor parts 183

reviewing 185

build parts 36, 47, 318

build path 14, 29, 31, 32, 35, 36, 37, 174,

184

C
CALL AUDIT 314

CALL COMMIT 314

CALL CREATX 314

CALL CSPTDLI 314

CALL EZCHART 314

CALL RESET 314

CICS 7, 8, 31, 38, 72, 73, 83, 209, 318,

334, 338, 339, 341, 347, 357, 358, 371, 378

CALL CREATX differences 215

commit differences 215

EZE special data word differences
EZEAPP 216

EZEDEST 216

EZEDESTP 216

EZELTERM 216

EZERCODE 216

EZERT8 216

EZESEGTR 216

EZEUSR 216

EZEUSRID 216

EZECONCT differences 215

features not supported
native environments 215

function words
not supported, native

environments 214

resource associations
not supported, native

environments 215

rollback differences 215

service routines
not supported, native

environments 214

XFER, DXFR 215

COBOL generation
generating and testing 198

common code 7, 20, 27, 29, 30, 31, 32,

42, 99, 141

common parts 120, 121, 139

comparison value items
DL/I I/O 96

configuration map 11, 14, 17, 18, 19, 20,

21, 23, 26, 29, 39, 40, 41, 84, 137, 138,

139, 140, 141, 142, 146, 148, 149, 150,

151, 172, 318, 415

containerContextDependent property 14,

29, 31, 32, 36, 37, 48

control part 21, 25, 39, 164, 316, 317,

318, 358, 381

bind control 24, 38, 345, 383

generation option 24, 38

generation options 36, 38, 47, 317,

318

link edit 24, 38, 345, 382, 383

linkage option 24

linkage table 334

Calllink 334

Crtxlink 339

Dxfrlink 340

Filelink 338

control part (continued)
linkage table options 317

resource association 24, 38, 341

resource associations 317

converse 28, 30, 46, 49, 103, 107, 279

cross-part migration 4, 18, 27, 28, 32, 42,

61

D
data item 11, 30, 34, 35, 39, 48, 61, 62,

66, 102, 107, 228, 292, 293, 357, 364, 365,

367, 368, 369, 370, 371, 385, 411

assignment statements 98

implicit 84, 97, 378

preferences 161

renaming 38, 160, 221, 225

shared 28, 31, 37, 40, 41, 61, 63, 64,

66, 70

database 9, 17, 18, 19, 21, 30, 90, 91, 122,

128, 131, 162, 163, 166, 171, 318, 358,

363, 378, 381

DB2
performance information 155

debug
EZESQLCA 212

EZESQRRM 212

EZESQWN6 212

runtime differences 211

maps 211

SQL 212

deleteAfterUse 379

destPort 381

display 27, 28, 30, 31, 33, 42, 43, 49, 74,

75, 89, 100, 253, 254, 255, 256, 259, 279,

373, 375, 377, 385

DL/I I/O
comparison value items 96

E
edit function 28

edit routine 28, 40, 42, 43, 64, 78, 234,

265, 268, 357, 367, 368, 372

edit table 28, 43, 231, 234, 247, 248

error messages
HPT 357

IWN.MIG 364

IWN.VAL 391

IWN.XML 403

evensql 368, 370

export 25, 177, 364, 365

External Source Format 18, 21, 23, 25,

26, 32, 42, 43, 47, 73, 92, 122, 128, 148,

155, 166, 177, 179, 261, 364, 365, 366,

367, 368, 373, 379, 385, 411, 417

EZE words 46, 61, 227, 305

date and time
EZEDAY 307

EZEDAYL 307

© Copyright IBM Corp. 2004, 2006 437

EZE words (continued)
date and time (continued)

EZEDAYLC 307

EZEDTE 307

EZEDTEL 307

EZEDTELC 307

EZETIM 307

DL/I
EZEDLCER 306

EZEDLCON 306

EZEDLDBD 306

EZEDLERR 306

EZEDLKEY 306

EZEDLKYL 306

EZEDLLEV 306

EZEDLPCB 306

EZELTERM
ambiguous situations 107

EZESYS
ambiguous situations 108

EZEWAIT
ambiguous situations 110

floating point math functions
EZEFLADD 313

EZEFLDIV 313

EZEFLMOD 313

EZEFLMUL 313

EZEFLSET 313

EZEFLSUB 313

general function
EZEBYTES 310

EZEC10 310

EZEC11 310

EZECOMIT 310

EZECONV 310

EZEG10 310

EZEG11 310

EZEPURGE 310

EZEROLLB 310

EZEWAIT 310

general math functions
EZEABS 312

EZECEIL 312

EZEEXP 312

EZEFLOOR 312

EZEFREXP 312

EZELDEXP 312

EZELOG 312

EZELOG10 312

EZEMAX 312

EZEMIN 312

EZEMODF 312

EZENCMPR 312

EZEPOW 312

EZEPRSCN 312

EZEROUND 312

EZESQRT 312

math 312

object scripting
EZESCRPT 313

other data
EZEAID 308

EZEAPP 308

EZECNVCM 308

EZECONVT 308

EZEDEST 308

EZEDESTP 308

EZE words (continued)
other data (continued)

EZEFEC 308

EZELOC 308

EZELTERM 308

EZEMNO 308

EZEMSG 308

EZEOVER 308

EZEOVERS 308

EZERCODE 308

EZEREPLY 308

EZERT2 308

EZERT8 308

EZESEGM 308

EZESEGTR 308

EZESYS 308

EZETST 308

EZEUSR 308

EZEUSRID 308

program flow
EZECLOS 305

EZEFLO 305

EZERTN 305

SQL
EZECONCT 305

EZESQCOD 305

EZESQISL 305

EZESQLCA 305

EZESQRD3 305

EZESQRRM 305

EZESQWN1 305

EZESQWN6 305

string
EZESBLKT 311

EZESCCWS 311

EZESCMPR 311

EZESCNCT 311

EZESCOPY 311

EZESFIND 311

EZESNULT 311

EZESSET 311

EZESTLEN 311

EZESTOKN 311

trigonometric math functions
EZEACOS 312

EZEASIN 312

EZEATAN 312

EZEATAN2 312

EZECOS 312

EZECOSH 312

EZESIN 312

EZESINH 312

EZETAN 312

EZETANH 312

user interface
EZEUIERR 313

EZEUILOC 313

EZEDLPCB 87

EZELOC 215

EZEPURGE 214

F
fill character 66, 231, 247, 265

filter 20, 21, 162, 358

configuration map 138

configuration maps 139

filter (continued)
packages 121

projects 118, 119, 120

repository 19, 117, 118, 119, 122, 128,

129, 138, 149, 151

version 119

version depth 118, 119, 138, 139

version name 118, 119, 138, 139

formGroup 72, 73, 184

function 14, 27, 28, 29, 34, 36, 37, 39, 40,

41, 42, 43, 46, 47, 61, 64, 65, 67, 68, 72,

78, 79, 81, 89, 90, 91, 94, 95, 96, 97, 98,

99, 100, 101, 103, 105, 107, 108, 110, 159,

268, 269, 275, 276, 278, 279, 292, 293,

365, 367, 368, 372, 374, 375, 376, 377,

378, 394

common 30, 42, 48

DL/I I/O 288

DL/I statements 289

I/O 280

renaming 38, 160, 221, 225

SQL 47, 159

SQL I/O 281, 283, 286

functions
handling ambiguous situations 89

SQL I/O 92

G
general function EZE words 310

generate 28, 29, 31, 37, 42, 43, 375

program 7, 18, 28, 367, 372, 373, 381

programs 24

report 121, 122, 123, 147, 148

tables 24

VisualAge Generator 130

generation option 11, 317, 318, 345, 380,

381

conversion table values 334

VisualAge Generator 33

generation option part 11

generation options 186

H
help map 76, 256, 258, 269

help map group 49, 75, 161, 358, 372,

374

help map names 75

high-level PLP project 19, 20, 119, 128,

129

creating 128

I
I/O options for default (unmodified)

DL/I statements 289

implicit item 48, 97, 378

in programs 84

import 34, 164, 167, 171, 172, 177, 364,

365

External Source Format 25

Stage 3 tool 18

import into workspace 164, 166, 168

import statement 24, 26, 29, 31, 32, 34,

35, 37, 47, 49, 85, 174, 185, 252, 255, 318

438 Rational Software Development Platform: VisualAge Generator to EGL Migration Guide

isDecimalDigit 79, 264

IWN.MIG 364

IWN.VAL 391

IWN.XML 403

J
Java and C++ differences

EZE special data words
EZECONVT 218

EZERCODE 218

general 218

maps 218

SQL
EZESQLCA 218

EZESQRRM 218

EZESQWN6 218

Java generation
generating and testing 200

JDBC level, setting 413

JSP
invalid character constant 404

L
library 13, 137, 139, 146, 334

management 4, 6, 7, 8, 13, 41

Smalltalk 18, 22, 136, 138, 147

linkage option parts 183

linkage options 187

linkage options parts
reviewing 188

linkedit 187

log file 19, 21, 23, 25, 127, 148, 168, 169,

178, 180

name 123, 143, 163, 171

name preference 145

Stage 2 migration 167

M
map 25, 28, 34, 40, 41, 48, 61, 63, 64, 74,

76, 89, 99, 130, 184, 221, 294, 375, 377,

378, 385

assignment statements 98

constant field 259, 261, 264

display 28, 31, 42

general syntax, map type, and

properties 256

EZEMSG 308

numeric hardware attribute 79

print 379

printer 27, 28, 31, 42

general syntax, map type, and

properties 258

range edit 411

renaming 38, 160, 225

spanning 140

unnamed variable fields 81

unprotected constants 81

variable field 28, 42, 43, 78, 259, 261,

264, 265, 267

error messages 268

XFER with 304

map edits 66

map group 25, 27, 30, 38, 39, 61, 73, 74,

130, 357, 365, 371, 372, 373, 374

general syntax and floating areas 253

renaming 221

spanning 120, 140

map group part 11

map groups 252

ambiguous situations 72

device names, types, sizes 254

general information 252

map item
checking for NULL 103

edit routine 64

implicit 84

map names 75

map part 11

map properties
error messages 234

general edits 231

general information 231

numeric edits 233

maps 255

ambiguous situations 72

functions and I/O options 279

general information 255

messages 21, 63, 69, 74, 79, 82, 94, 95,

127, 136, 148, 169, 178, 180, 231, 248,

256, 258, 259, 261

debug 123, 143

fatal 123, 143

from migration tools 357

HPT 357

informational 123, 143

IWN.MIG 364

IWN.VAL 391

IWN.XML 403

Problems view 24, 156, 162, 180, 385

Stage 1 common 357

Stage 1 on VisualAge for Java 360

Stage 1 on VisualAge for

Smalltalk 363

Stage 2 167, 364

Stage 3 163, 171

warning 123, 143

MigPreferences.xml 115, 116, 118, 121,

127, 135, 136

sample 124, 143

migration database 19, 20, 21, 22, 23, 24,

32, 115, 117, 118, 122, 123, 128, 130, 135,

136, 138, 142, 148, 168, 171, 174, 365,

366, 385, 413, 417

creating 413

resetting
tables 414

tables 414

views 414

migration feature 136

adding 116

loading 136

migration plan 19, 20, 21, 117, 118, 121,

122, 123, 128, 131, 137, 138, 142, 143,

147, 148, 151, 358, 414

creating manually 130

high-level configuration maps 149

multiple 21

migration set 19, 20, 21, 23, 28, 29, 31,

32, 39, 40, 41, 42, 43, 47, 48, 73, 85, 118,

119, 120, 126, 128, 129, 130, 131, 138,

139, 140, 141, 142, 146, 149, 164, 166,

167, 168, 174, 252, 359, 365, 366, 415

migration sets
processing 32

migration tool performance 418

O
output files 26, 27

Overwrite PLN 147, 148, 151

P
package 11, 12, 14, 17, 20, 21, 22, 24, 25,

26, 32, 34, 35, 36, 37, 38, 39, 40, 47, 49,

70, 84, 85, 116, 119, 120, 121, 122, 127,

130, 139, 140, 148, 167, 168, 169, 174,

177, 178, 180, 184, 185, 226, 252, 318,

334, 339, 360, 363, 365

naming 140

renaming 121, 141

part name 14, 32, 35, 38, 184

conflicting 47, 88, 159, 161, 317

duplicate 29, 37

invalid 38, 72, 83, 221, 225, 345, 382

renaming 160, 225

resolution 28, 37

VisualAge Generator 364

parts 20

large numbers 17

placement 38

single file mode 25

Stages 1, 2, 3 25, 38

placing 32

single file mode 177, 178

Stages 1 to 3 38

Project List Parts (PLP) 18

Stages 1, 2 , 3 24

Stages 1, 2, 3 18

performance
migration tool 418

planning your migration 3, 4

preference file 363

migration 147

Java 20

preferences 20, 25, 171, 172, 358, 363

build descriptor 32

deriving file names 145

editor 32

recommended 156

renaming 160

repository filters 149

required EGL 156

sample file 116

setting 177

Single File Mode 157

SQL 142, 159

Stage 1 19, 21, 39, 151

Java 19

setting 129, 131

setting on Java 116

setting on Smalltalk 136

Stage 2 22, 23, 166

Index 439

preferences (continued)
setting 162

Stage 3 23, 24

VAGen Migration Preferences 38,

157, 179, 286

VAGen Migration Syntax

Preferences 160

VAGen Syntax Migration

Preferences 281, 283

workbench
setting 155

Problems view 12, 28, 37, 38, 43, 47, 48,

49, 65, 69, 73, 74, 82, 83, 91, 92, 99, 100,

101, 102, 103, 156, 178, 184, 185, 190,

318, 334, 338, 339, 366, 373, 379, 382,

385, 391, 403

program 27, 28, 29, 30, 32, 38, 39, 40, 42,

43, 48, 61, 66, 75, 85, 91, 103, 129, 184,

269, 271, 275, 358, 365, 378, 379

behavior 17, 27

implicit data items 84

migrating with 41

properties 32, 34

renaming 221, 225

sample
Stage 1 tool 19, 22

programs 268

sample 17

single file migration 24

project list part 14

project list part (PLP) 20, 129

project name 20, 39, 118, 119, 120, 121,

128, 130, 140, 167, 168

PSB 271, 314

R
record 28, 34, 48

renaming 38

records 28, 29, 61, 66, 70, 85, 99, 235,

368, 369, 370, 378, 379

alternate specification 68, 69, 237

assignment statements 98

common 48

DL/I 243

I/O 279

indexed 280

level 77 items 67, 68

message queue 280

redefined 66, 67

relative 280

renaming 221, 225

serial 280

SQL 239, 385

User Interface (UI) 21, 38, 245, 246,

247, 248, 249, 279, 358

working storage 22, 161

Rename
User Exit Information 157

renaming 20, 21, 38, 76, 117, 121, 122,

137, 148, 364, 367

Renaming page 121, 141

Renaming Prefix 38, 160, 308, 378

renaming rules 122, 140, 360, 363, 414

report 19, 21, 22, 30, 117, 128, 148, 358

Stage 1 migration 131, 142, 143, 145,

148, 164, 172

repository 13, 14, 17, 117, 126, 130, 164

Java 18, 20, 22, 127

source code 4, 6, 7, 8, 18, 23, 24, 318

Repository explorer 12

Repository Filter 139

repository management 13

reserved word list 38

reserved words 21, 23, 25, 32, 38, 221,

245, 250, 256, 258, 269, 358

EGL
list 221

formGroup names 72

Java
list 226

program names 83

SQL 160

list 225

table names 71

UI record names 70

resource association 187, 318, 341, 382,

403

resource association parts
EGL

reviewing 190

resource associations parts 183

results
intermediate 17

migration 367

pilot project 8

reviewing 121

Stage 1 128

migration database 148

running the tool
Stage 1 22, 146, 411

Java 127

Smalltalk 147

Stage 2 22, 166

batch mode 23, 167

user interface 166

Stage 3 23, 171

batch mode 24

runtime differences
COBOL

CALL 212

DXFR 212

maps 213

XFER 212

Java
CALL 213

DXFR 213

XFER 213

S
service routine 88, 227, 313

general syntax 313

VisualAge Generator and EGL

equivalent routines 314

SET map PAGE 100

single file migration
batch mode 179

user interface 177

single file mode 25, 26, 27, 38, 42, 73,

178, 179, 252, 255, 366, 368, 371, 385

migration 177

parts placement 177

set up 177

source code 3, 7, 17, 18, 21, 22, 23, 24,

25, 27, 30, 46, 128, 149, 183, 185, 209,

313, 391

extracting from Java 115, 127

extracting from Smalltalk 147

pilot project 4

reviewing 185

SQL 9, 27, 229, 235, 318, 369, 370, 375

checking item for NULL 378

checking items for NULL 103

hard errors 104

statements 61

WHERE clause 33, 61

SQL clauses
FOR UPDATE OF 283, 286

GROUP BY 283, 286

HAVING 283, 286

INTO 283, 286

ORDER BY 283, 286

SELECT 283, 286

WHERE 283, 286

SQL EZE words 305

SQL I/O 375, 376

Execution Time Statement Build 159

SQL I/O and !itemColumnName 95

SQL I/O and missing SQL clauses 93

SQL I/O options
ADD 281, 283, 286

CLOSE 281, 283, 286

DELETE 281, 283, 286

INQUIRY 281, 283, 286

REPLACE 281, 283, 286

SCAN 281, 283, 286

SETINQ 281, 283, 286

SETUPD 281, 283, 286

SQLEXEC 281, 283, 286

UPDATE 281, 283, 286

SQL I/O statements 91

SQL I/O with multiple updates 96

SQL query 415, 417

SQL record 47, 369

SQL record definition 29, 30

SQL records
alternate specification 68

SQL row record 62

SQL statements
modified

without Execution Time Statement

Build 283

modofied
with Execution Time Statement

Build 286

unmodified
without Execution Time Statement

Build 281

SQL table 369

SQL tables 22, 92

Stage 1 18

Java 115

preferences 39, 116

running 127

Smalltalk 135

preferences 39, 136

running 147

Stage 2 18, 155

preferences
setting 162

440 Rational Software Development Platform: VisualAge Generator to EGL Migration Guide

Stage 2 (continued)
running 166

batch mode 167

user interface 166

Stage 3 18, 171

preferences 171

running 171

statements 46, 47, 108, 227, 269, 279, 292

use declaration 72

ambiguity in I/O 89

assignment, MOVE, MOVEA 294

CALL 303, 308

CALL, DXFR, XFER 358

call, transfer, show 83, 378

display 89

DXFR 33, 303

FIND 99

flow 268, 275, 305

function invocation 293

general rules
data item qualification and

numeric literals 293

I/O 61, 159, 308, 379

IF, WHILE, TEST 298

level 77 items 98

link edit 345

print 89

produced in ambiguous situations 61

RETRIEVE, FIND 297

SET 295

SETUPD, UPDATE 374

SQL 95, 96, 275

use declaration 73, 271, 371

XFER 33, 304

subsystem 17, 29, 30, 31, 32, 35, 37, 43,

47, 48, 65, 68, 69, 70, 79, 92, 94, 95, 99,

100, 129, 150, 184

symbolic parameters 318, 341, 345, 346

file-related 347

part-related 346

user-defined 347

syntax 25, 90

assignment, MOVE, MOVEA

examples 294

data item examples 229

EGL 4, 18, 27, 28, 32, 41, 160, 171,

185, 227, 357, 385

conversion (Stage 2) 155

errors 48

invalid 94

precise 27

general conventions
differences between VisualAge

Generator and EGL 228

general display map examples 256

general function examples 276

general printer map examples 258

general program examples 269

general record examples 235

general table examples 250

map group examples 252

program main function example 275

service routine general examples 313

SET examples 295

statement examples
function invocation 293

tables 227

syntax (continued)
VAGen 28, 48, 160, 364, 365

XFER examples 304

system library function 28, 42, 65, 87,

108, 293, 294, 298

T
table 28, 34, 38, 48, 129

tables 61, 62, 69, 91, 249, 371

database 122, 142

FIND statement 99

renaming 221, 225

RETR statement 100

Tables and Additional Records list 48,

85, 271, 318

terminology 3

trace 318

level 123, 143

messages 357

U
UI record 40

renaming 38

unused parts 20, 120, 121, 139, 140, 141

update database 122, 148

use declaration 379

V
VAGen Migration Preferences 168

W
Windows XP

using DB2 413

wizard
import 25, 180

workbench
preferences

setting 155

workspace 4, 6, 11, 12, 18, 23, 24, 30, 31,

32, 35, 70, 116, 125, 129, 130, 131, 156,

162, 167, 168, 169, 172, 177, 179, 318,

359, 360, 367

clean 126

duplicate parts 26, 29

restoring 127, 146

saving 126, 145

Index 441

442 Rational Software Development Platform: VisualAge Generator to EGL Migration Guide

Readers’ Comments — We’d Like to Hear from You

Rational Software Development Platform

VisualAge Generator to EGL Migration Guide

Version 6 Release 011

 Publication No. SC31-6830-03

 We appreciate your comments about this publication. Please comment on specific errors or omissions, accuracy,

organization, subject matter, or completeness of this book. The comments you send should pertain to only the

information in this manual or product and the way in which the information is presented.

For technical questions and information about products and prices, please contact your IBM branch office, your

IBM business partner, or your authorized remarketer.

When you send comments to IBM, you grant IBM a nonexclusive right to use or distribute your comments in any

way it believes appropriate without incurring any obligation to you. IBM or any other organizations will only use

the personal information that you supply to contact you about the issues that you state on this form.

Comments:

 Thank you for your support.

Submit your comments using one of these channels:

v Send your comments to the address on the reverse side of this form.

v Send a fax to the following number: 1-800-227-5088(US and Canada)

v Send your comments via e-mail to: kfrye@us.ibm.com

If you would like a response from IBM, please fill in the following information:

Name

Address

Company or Organization

Phone No. E-mail address

Readers’ Comments — We’d Like to Hear from You
 SC31-6830-03

SC31-6830-03

����

Cut or Fold
Along Line

Cut or Fold
Along Line

Fold and Tape Please do not staple Fold and Tape

Fold and Tape Please do not staple Fold and Tape

NO POSTAGE
NECESSARY
IF MAILED IN THE
UNITED STATES

BUSINESS REPLY MAIL
 FIRST-CLASS MAIL PERMIT NO. 40 ARMONK, NEW YORK

 POSTAGE WILL BE PAID BY ADDRESSEE

IBM Corporation

Information Development

Department G7IA / Bldg. 503

P.O. Box 12195

Research Triangle Park, NC

 27709-2195

_ _

_ _

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_

����

Program Number: 5724-J19

Printed in USA

SC31-6830-03

	Preface
	Who should read this book
	Related information

	Contents
	Part 1. Migration overview
	Chapter 1. Migration Overview
	Terminology used in this book
	What is new in EGL that requires migration?
	Planning your migration
	Determining whether you can migrate to EGL
	VisualAge Generator features not available in EGL

	Terminology differences
	References

	Chapter 2. Migration Tool Philosophy
	Overview of the VisualAge Generator to EGL Migration Tools
	Migration tool terminology
	Stage 1 Details
	Step 1
	Step 2

	Stage 2 Details
	Stage 3 Details

	Overview of Single File Migration
	Migration challenges
	Precise EGL syntax
	When and how part names are resolved
	Common code scenarios
	Common code and VisualAge Generator
	Common code and the migration tool

	Techniques used by the VisualAge Generator to EGL Migration Tool
	Overview of techniques
	Editor and build descriptor preferences
	Program properties
	EGL build path and import statements
	containerContextDependent Property
	EGL reserved word list
	Placing parts in EGL files
	Migrating with a program
	Migrating with associated parts
	Migrating without associated parts
	Controlling the order for processing migration sets
	Overwriting and merging files
	General rules

	Determining how to organize your EGL source code
	Differences in product capabilities for organizing your code
	VAGen on Java code organization
	VAGen on Smalltalk code organization
	EGL code organization

	Organization capabilities provided by the migration tool
	Limitations and tradeoffs of EGL source code organization techniques

	What is new for the VAGen migration tool since EGL 5.1.2?
	What is new for the VAGen migration tool since EGL 6.0 iFix?
	What is new for the VAGen migration tool since EGL 6.0.0.1?
	What is new for the VAGen migration tool since EGL 6.0.1?
	What is new for the VAGen migration tool since EGL 6.0.1.1?
	Known restrictions for the migration tools
	General
	Stage 1 on Java and Smalltalk
	Stages 2 and 3
	Syntax migration

	Chapter 3. Handling ambiguous situations
	Handling ambiguous situations for data items
	PACK data items with even length
	Shared edits and messages
	Map edit routine for shared data items
	Fill characters for shared data items

	Handling ambiguous situations for records
	Redefined records
	Level 77 items in records
	Alternate specification records
	Different definitions with the same record name
	Reserved words and UI record names

	Handling ambiguous situations for tables
	Reserved words and table names

	Handling ambiguous situations for map groups and maps
	Reserved words and formGroup names
	Map group and formGroup requirements
	Floating areas and starting positions
	Map groups, maps, and device sizes
	Map names and help map names
	Numeric variable fields
	Map variable fields and edit routines
	Map fields and the numeric hardware attribute
	Map arrays and attributes
	Unnamed map variable fields
	Unprotected map constants
	Fields at row=0, column=0

	Handling ambiguous situations for programs
	Program names and reserved words
	Implicit data items in programs
	Associated program parts
	Program with EZEDLPCB in called parameter list
	Intermediate variables required for migration

	Handling ambiguous situations for functions, including I/O statements
	DISPLAY statement for maps
	I/O error routine
	SQL I/O statements
	SQL I/O and missing required SQL clauses
	SQL I/O and !itemColumnName
	SQL I/O with multiple updates
	DL/I I/O and comparison value items

	Handling ambiguous situations for other statements
	Implicit data items in statements
	Level 77 items in statements
	Table references in statements
	Assignment statements
	FIND statement
	RETR statement
	SET map PAGE statement
	SET mapItem attributes
	Checking for IN literal or scalar
	Checking SQL and map items for NULL
	I/O error values UNQ and DUP
	I/O error value LOK

	Handling ambiguous situations for EZE words
	EZELTERM
	EZESYS
	EZEWAIT

	Part 2. Migrating from VisualAge Generator 4.5 on Java to EGL
	Chapter 4. Stage 1 — Extracting from Java
	Installing the Stage 1 migration tool on VisualAge for Java
	Adding the migration feature
	Creating the migration database

	Setting Stage 1 preferences
	Build Plans page
	Mapping page
	Renaming page
	Execution page
	Sample MigPreferences.xml file

	Before you run the Stage 1 tool — hints and tips
	Improving performance
	Saving your workspace

	Running the Stage 1 tool
	Migration plans and high-level PLP projects
	Creating a high-level PLP project
	Creating a migration plan file manually

	Part 3. Migrating from VisualAge Generator 4.5 on Smalltalk to EGL
	Chapter 5. Stage 1 — Extracting from Smalltalk
	Installing the Stage 1 migration tool on VisualAge Smalltalk
	Loading the migration feature

	Creating the migration database
	Setting Stage 1 preferences
	Build Plans page
	Mapping page
	Renaming page
	Execution page
	Sample MigPreferences.xml file
	Deriving file names from your preferences

	Before you run the Stage 1 tool — hints and tips
	Improving performance
	Saving your image

	Running the Stage 1 migration tool
	Migration plans and high-level configuration maps
	Creating a high-level configuration map
	Chaining configuration maps
	Using configuration maps with the Stage 1 tool

	Creating a migration plan file manually

	Part 4. Stages 2 and 3 — common migration steps
	Chapter 6. Stage 2—Conversion to EGL syntax
	Setting DB2 performance information
	Setting your workbench preferences
	Start up parameters
	Required EGL preferences
	Recommended preferences
	VAGen Migration Preferences
	
	VAGen Migration Database I/O Preferences
	VAGen Migration Syntax Preferences

	Other recommended settings

	Setting up the Stage 2 VAGen migration file
	Running Stage 2
	Running Stage 2 from the user interface
	Running Stage 2 in batch mode

	Chapter 7. Stage 3 — Import
	Running the Stage 3 tool
	Running Stage 3 in batch mode
	Using the migration sets written to temporary directories

	Chapter 8. Running migration in single file mode
	Running single file migration using the user interface
	Running single file migration using batch mode

	Part 5. Completing the migration
	Chapter 9. Completing your migration
	Setting the Build Order preference
	Exporting your preferences
	Saving a baseline for EGL projects and packages
	Preliminary steps for completing single file migration
	Common steps for both Stage 1 — 3 and single file migration
	Reviewing your EGL source code
	Reviewing your EGL build descriptor parts
	Reviewing general build descriptor options
	Reviewing COBOL generation build descriptor options
	Reviewing Java generation build descriptor options
	Establishing a debug build descriptor part

	Reviewing your EGL linkage option parts
	Reviewing your EGL resource association parts
	Establishing a bind control part to use as a template
	Establishing a program-specific bind control part
	Reviewing linkedit commands
	Converting VAGen preparation templates and procedures to EGL build scripts
	Converting VAGen runtime templates
	Converting the VAGen reserved words file
	Reviewing your VGWebTransactions
	Preparing for debugging
	Installing the EGL server product
	Generating and testing with COBOL generation
	Generating and testing with Java generation
	Reviewing your standards
	Planning for dual maintenance of your source code
	Eliminating the use of VisualAge Generator Compatibility mode

	Part 6. Language and runtime differences
	Chapter 10. Language and runtime differences
	Language differences
	Runtime differences
	General differences
	Differences in SQL support
	Differences in debug
	Differences in generated COBOL
	Differences in generated Java
	Differences between host and workstation environments
	Differences between distributed CICS and native workstation environments
	Differences between generated C++ and generated Java

	Part 7. Appendixes
	Appendix A. Reserved words
	EGL reserved words
	EGL enumeration words
	SQL reserved words
	SQL reserved words requiring special treatment

	Java reserved words

	Appendix B. Relationship of VisualAge Generator and EGL Language Elements
	General syntax conventions
	Data item
	Record
	Tables
	Map groups
	Maps
	Programs
	Functions
	Statements
	EZE words
	Program flow EZE words
	SQL EZE words
	DL/I EZE words
	Date and time EZE words
	Other data EZE words
	General function EZE words
	String EZE words
	Math EZE words
	User interface EZE words
	Object scripting EZE words

	Service Routines
	PSBs
	Control parts
	Generation options part
	Linkage table parts
	callLink
	fileLink
	Crtxlink
	Dxfrlink

	Resource association part
	Link edit part
	Bind control part

	Symbolic parameters
	Other generation information
	Preparation templates and procedures
	Runtime templates

	Other runtime information
	Runtime environment variables
	vgj.properties

	Appendix C. Messages from the migration tools
	Messages from the VisualAge Generator to EGL migration tool—Stage 1
	Stage 1 common messages
	Stage 1 on VisualAge for Java
	Stage 1 on VisualAge Smalltalk

	Messages from the VisualAge Generator to EGL migration tool— Stage 2
	Messages from the VisualAge Generator to EGL migration tool—Stage 3

	Appendix D. Messages in the Problems view
	Appendix E. IWN.xxx messages in the Problems view
	IWN.VAL messages
	IWN.XML messages
	Java messages for JSPs
	Reference information for messages - name resolution and qualification rules
	VisualAge Generator name resolution and qualification rules
	EGL name resolution and qualification rules
	Validation messages due to differences in name resolution and qualification rules
	Example 1
	Example 2
	Example 3
	Example 4

	Appendix F. Situations where incorrect External Source Format causes problems in creation of EGL
	Appendix G. Migration Database
	Creating the DB2 migration database
	Setting the JDBC level for DB2 7.2
	Setting the JDBC level for DB2 8.1 or higher
	Using DB2 on Windows XP
	Creating the migration database

	Resetting the migration database
	Cataloging a remote database using DB2
	Uncataloging a remote database using DB2
	Useful Queries

	Appendix H. Migration tool performance
	Number of projects, packages, parts, and programs
	Number of migration sets and other migration options
	Processor speed
	Number of lines in function parts
	Clean Java workspace for Stage 1
	Disk space requirements

	Appendix I. Required modifications if you migrated with a previous version of the migration tool
	General changes
	Changes due to the @ sign
	Additional EGL replacements for some EZE string functions

	Changes due to IMS and DL/I support
	Program part
	PSB part and DL/I segment record
	Function I/O - PSB name, database identifier, scan parent, scan update, and SSAs
	EZEDL* special function words and CSPTDLI service routine
	Generation option parts
	Linkage table parts
	Resource association parts

	Changes due to Web transaction support
	DataItem parts - help and label text
	Web transaction program and UI Record parts
	XFER statement
	Generation option parts

	Notices
	Trademarks

	Index
	Readers’ Comments — We'd Like to Hear from You

